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Abstract

A probability theory-based method for simultaneous optimization of multi-object orthog-
onal test design is addressed in the present paper, which employs the concept of preferable
probability to represent the preferable degree of the candidate alternative in the optimization.
The utility indexes of all the performance indicators of alternative are divided into beneficial
and unbeneficial types according to the preference in the optimization, and each utility index
contributes to a partial preferable probability in positively or negatively correlative manners
linearly according to its type; the total preferable probability of a candidate alternative is the
product of all partial preferable probabilities, which thus transfers the multi-objective prob-
lem into a single objective problem. Finally, all candidate alternatives are ranked upon their
total preferable probability to complete the optimization. As to multi-objective orthogonal
test design, the optimization is conducted by applying range analysis to the total preferable
probabilities of candidate alternatives.

K e y w o r d s: orthogonal test design, multi-object optimization, probability-based method,
overall consideration, preferable probability

1. Introduction

Usually, in many industrial processes and experi-
ments, several quality characteristics are involved in
the analysis for quality improvement or optimization.
The overall quality improvement or optimization of an
experiment involves the simultaneous optimization of
these several controlling indexes (objects). Optimiza-
tion for one individual object separately could not give
the proper result of the simultaneous optimization of
several objects integrally, i.e., the optimization of the
multiple objects simultaneously does not equal any in-
dividual object optimization.
Up to now, though several multi-objective opti-

mization methods have been developed [1–5], such
as Multi-Objective Optimization based on Ratio
Analysis (MOORA), Analytical Hierarchy Process
(AHP), Vlšekriterijumsko KOmpromisno Rangiranje
(VIKOR), Technique of Ranking Preferences by Simi-
larity to the Ideal Solution (TOPSIS), etc., the general
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mathematical treatment in the above approaches is an
“additive” algorithm for the normalized evaluation in-
dexes, and some approaches even contain artificial fac-
tors, such as VIKOR, TOPSIS, and MOORA [3, 4],
etc. From the perspective of “simultaneous optimiza-
tion of multiple indexes,” the above approaches have
their inherent defects since the “additive” algorithm is
equivalent to taking the form of “union” in probability
theory [6]. In fact, in the viewpoint of probability the-
ory, “simultaneous optimization of multiple indexes”
must take the form of a “multiplication” algorithm
for the partial probability of each independent event
appropriately [6]. So, we have to obtain the partial
probability for each object as an independent event in
the multi-objective optimization process first. In addi-
tion, it is troublesome because of the introduction of
artificial factors in the previous approaches. Yang et
al. pointed out that if different normalization methods
are applied, it may produce considerable differences in
the results [7]. So, the above approaches are at most
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semi-quantitative methods in some sense.
As to optimization of multi-object orthogonal test

design, in Taguchi’s method, both “analysis of the
signal to noise ratio (SNR)” and “grey relational
analysis (GRA)” are combined to solve the problem
[8]. The normalization factors, the nonequivalence of
SNR assessments for beneficial and unbeneficial in-
dicators, the “additive” algorithm, and the artificial
factor (grey relational coefficient) are all involved in
the assessment, which inevitably induces the inherent
shortcomings.
Derringer et al. and Jorge et al. once proposed de-

sirability function to transfer each response variable
into a desirability value [1, 2], then all the desirability
values are combined by using the geometric means to
get a single desirability value to represent the overall
assessment for the combined responses. But this ap-
proach is not consistent with the essence of probability
theory for simultaneous optimization of multi-objects
at all.
Therefore, comprehensively quantitative assess-

ment for simultaneous optimization of multi-object is
still needed.
In this paper, a probability theory-based method

for simultaneous optimization of multi-object is ad-
dressed first, which employs the concept of preferable
probability to represent the preferable degree of the
candidate material or alternative in the optimization.
The total (overall) preferable probability of a candi-
date alternative is the product of all partial preferable
probabilities. The total preferable probability of a can-
didate alternative is the unique decisive index for the
alternative selection quantitatively. Thus, the final in-
dex to be optimized is the total preferable probability
of a candidate alternative, and then the optimization
of multi-object orthogonal test design is conducted by
using range analysis to the total preferable probabili-
ties comprehensively.

2. Main treatment of the probability theory
method

2.1. Concept of preferable probability for
alternative selection

As a multi-objective optimization, several objects
(controlling indexes) are involved undoubtedly. Some
object indicators might be beneficial to the alterna-
tive selection, but other indicators are unbeneficial to
it. An actual alternative is an integral body of both
beneficial and unbeneficial indicators. In general, it is
impossible for an alternative to have only full bene-
ficial or unbeneficial indicators to the alternative se-
lection. Therefore, an overall consideration is needed
to simultaneously deal with both the beneficial and
unbeneficial indicators for alternative selection. Thus,

probability theory could be employed to conduct this
issue quantitatively.
As a quantitative assessment to the term “the

higher, the better” for the utility index of a response
indicator of candidate alternative, a new concept of
preferable probability is adopted, which reflects the
preferable degree of the candidate alternative in the
selection, i.e., the preferable probability represents the
preferable degree of the utility index in the alternative
selection quantitatively.
From the principle of simplicity, the preferable

probability of a utility index with the character of “the
higher, the better” (beneficial factor) in the alterna-
tive selection process is positively correlative to this
utility index linearly, i.e.,

Pij ∝ Uij , Pij = αjUij ,
i = 1, 2, . . . , n; j = 1, 2, . . . ,m. (1)

In Eq. (1), Uij represents the j-th utility index of the
i-th candidate alternative; Pij is the partial preferable
probability of the beneficial utility index Uij ; n is the
total number of candidate alternatives in the alterna-
tive group involved; m is the total number of utility
index of each candidate alternative in the group; αj is
the normalized factor of the j-th utility index.
Furthermore, according to the general principle of

normalization in probability theory [6], the summa-
tion of each Pij for the index i in j-th utility index is
normalized and equal to 1, i.e.,

∑n
i=1 Pij = 1, thus, it

obtains

n∑

i=1

αiUij =
n∑

i=1

Pij = 1, αj = 1/(nUj), (2)

where U j is the arithmetic average value of the j-th
utility index in the alternative group involved.
Evenly, the partial preferable probability of the un-

beneficial utility index Uij to the candidate alternative
is negatively correlative to its utility index linearly,
i.e.,

Pij ∝ (Ujmax + Ujmin − Uij),
Pij = βj(Ujmax + Ujmin − Uij),
i = 1, 2, . . . , n; j = 1, 2, ...,m. (3)

In Eq. (3), Ujmax and Ujmin present the maximum
and minimum values of the utility index Uj in the
alternative group, respectively; βj is the normalized
indicator of the j-th utility index.
Correspondingly, by using the general principle of

normalization in probability theory [6], it obtains

βj = 1/[n(Ujmax + Ujmin)− nUj ]. (4)

Furthermore, in the viewpoint of “simultaneous op-
timization of multi-objects” of probability theory [6],
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Ta b l e 1. Fundamental performance indicators of seven materials [5]

Steel No. SH (Bhn) CH (Bhn) SFL (MPa) BFL (MPa) UTS (MPa) C (USC/lb)

1 220 220 460 360 880 0.342
2 200 200 330 100 380 0.171
3 270 270 630 435 590 0.119
4 270 270 670 540 1190 1.283
5 585 240 1160 680 1580 3.128
6 700 315 1500 920 2300 2.315
7 750 315 1250 760 1250 4.732

Ta b l e 2. Assessed results of material selection for exhaust manifold of automobile

Steel Partial preferable probability Total
No.

SH CH SFL BFL UTS C Pi × 105 Rank here Rank Kumar

1 0.0735 0.1202 0.0767 0.0949 0.1077 0.2062 0.1426 6 6
2 0.0668 0.1093 0.0550 0.0264 0.0465 0.2140 0.0105 7 7
3 0.0902 0.1475 0.1050 0.1146 0.0722 0.2164 0.2502 4 5
4 0.0902 0.1475 0.1117 0.1423 0.1457 0.1632 0.5023 3 4
5 0.1953 0.1311 0.1933 0.1792 0.1934 0.0788 1.3522 2 3
6 0.2337 0.1721 0.2500 0.2424 0.2815 0.1160 7.9605 1 2
7 0.2504 0.1721 0.2083 0.2003 0.1530 0.0054 0.1497 5 1

the product of all the partial preferable probability
Pij of each candidate alternative results in the total
(overall) preferable probability of the i-th candidate
alternative, i.e.,

Pi = Pi1 · Pi2 · · ·Pim =
m∏

j=1

Pij . (5)

Till now, the multi-objective problem is transferred
into a single objective problem by the total preferable
probability of a candidate alternative quantitatively,
which is the unique decisive index for the alternative
selection. Thus the total preferable probability can be
used to conduct the ranking of all the candidate alter-
natives comparatively to complete the optimization.

2.2. Procedure of probability theory-based
method for simultaneous optimization
of multi-object orthogonal test design

As the multi-objective problem is transferred into
a single objective problem by using the total prefer-
able probability of a candidate alternative, which is
the unique and overall decisive index for the simul-
taneous optimization of multi-object orthogonal test
design in respect of probability theory, the range anal-
ysis in the popular orthogonal test design for a single
object can be conducted for the total preferable prob-
ability naturally.
The probability theory-based method for simulta-

neous optimization of multi-object orthogonal test de-
sign is well developed.

2.3. Application of the probability
theory-based method in material selection

2.3.1. Material selection for exhaust manifold
of automobile

Kumar et al. [5] conducted material selection for
the exhaust manifold of an automobile; seven alter-
native materials and six criteria for material selection
are employed to perform the optimal design. The seven
materials include ductile iron (1), cast iron (2), cast
alloy steel (3), hardened alloy steel (4), surface hard-
ened alloy steel (5), carburized steels (6), and nitride
steels (7); the optimal criteria involve surface hard-
ness (SH), core hardness (CH), bending fatigue limit
(BFL), surface fatigue limit (SFL), ultimate tensile
strength (UTS), and relative cost (C) [5]. Kumar et
al. conducted material selection by using the TOP-
SIS method. The fundamental performance indica-
tors of the above materials from [5] are cited in Ta-
ble 1.
In this selection, the relative cost belongs to the

unbeneficial type index, and all other indexes belong
to the beneficial type index. Table 2 shows the as-
sessed results together with the result of Kumar for
comparison. From Table 2, it can be seen the best se-
lection is material (6), i.e., carburized steel, which is
different from that obtained by Kumar with the use of
TOPSIS; this is attributed to Kumar’s normalization
and the inherent defects of TOPSIS with “additive”
algorithm [7].
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Ta b l e 3. Test results of gas metal arc welding process parameters [9]

Test No. UTS (MPa) CVN (J) BP (mm) BH (mm) BW (mm)

1 420 110 2.04 2.25 10.82
2 500 100 1.12 2.85 5.14
3 380 80 2.58 3.1 7.22
4 320 90 1.03 2.51 11.42
5 410 60 1.45 3.72 5.35
6 220 100 1.05 2.05 8.83
7 280 55 2.01 2.15 10.72
8 510 115 3.5 3.88 4.5
9 480 85 3.78 2.85 6.85
10 320 60 2.15 2.15 11.2
11 250 95 1.9 2.98 12.4
12 310 83 2.42 2.06 9.8
13 520 100 3.82 2.97 4.18
14 430 70 2.25 3.08 8.32
15 270 60 1.65 2.15 10.74
16 290 80 1.88 2.7 12.88

Ta b l e 4. Partial and total preferable probabilities of the optimization of gas metal arc welding process parameters

Steel Partial preferable probability Total
No.

UTS CVN BP BH BW Pi × 105 Rank here Rank Kumar

1 0.0711 0.0819 0.0589 0.0716 0.0471 1.1547 5 5
2 0.0846 0.0745 0.0323 0.0599 0.0899 1.0969 6 4
3 0.0643 0.0596 0.0745 0.0550 0.0742 1.1653 4 6
4 0.0541 0.0670 0.0297 0.0665 0.0425 0.3053 16 13
5 0.0694 0.0447 0.0419 0.0430 0.0883 0.4925 9 9
6 0.0372 0.0745 0.0303 0.0754 0.0620 0.3936 12 10
7 0.0474 0.0410 0.0580 0.0735 0.0478 0.3958 11 12
8 0.0863 0.0856 0.1011 0.0399 0.0947 2.8199 2 2
9 0.0812 0.0633 0.1092 0.0599 0.0770 2.5875 3 3
10 0.0541 0.0447 0.0621 0.0735 0.0442 0.4878 10 11
11 0.0423 0.0707 0.0549 0.0574 0.0351 0.3310 14 15
12 0.0525 0.0618 0.0699 0.0752 0.0548 0.9334 7 7
13 0.0880 0.0745 0.1103 0.0576 0.0971 4.0405 1 1
14 0.0728 0.0521 0.0650 0.0554 0.0659 0.9000 8 8
15 0.0457 0.0447 0.0477 0.0735 0.0477 0.3407 13 14
16 0.0491 0.0596 0.0543 0.0628 0.0315 0.3142 15 16

2.3.2. Optimization of gas metal arc welding
process parameters

Achebo et al. performed the optimal issue of
gas metal arc welding process parameters by using
multi-objective optimization based on ratio analysis
(MOORA) and standard deviation (SDV) [9]. The
evaluation indicators include ultimate tensile strength
(UTS), Charpy V-notch impact energy (CVN), bead
penetration (BP), the bead height (BH) and bead
width (BW), and the adjusted variables are weld-
ing current, voltage, electrode diameter, and welding
speed [9]. Table 3 shows the test results [9].
Table 4 presents the assessed results of partial

preferable probabilities and the total preferable proba-

bility for each alternative of the 16 tests together with
the result of Achebo for comparison.
From Table 4, it can be seen that the appropriate

alternative is test No. 13, which agrees with that of
Achebo accidentally [9], but the sequences of other al-
ternatives are not the same as those given by Achebo.

2.3.3. Application of the probability
theory-based method in multi-objective

orthogonal test design

In general, the multi-objective orthogonal test de-
sign is conducted by using the approaches of the so-
called “comprehensive balance method” or “compre-
hensive scoring method,” “grey relational analysis,” or
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Ta b l e 5. Input variables and levels of the orthogonal test design for molding plastics [11]

Input test variables
Levels

Mold Melt Pressurizing Packing Injection
temperature A (◦C) temperature B (◦C) time C (s) pressure D (MPa) time E (s)

1 30 230 8 50 3.5
2 40 240 10 60 4.0
3 50 250 12 70 4.5
4 60 260 14 80 5.0

Ta b l e 6. Results of orthogonal test design for molding plastics process of storage box

Test
No.

Input test variables Performance
indicator

Partial
preferable
probability

Total
preferable
probability

A B C D E W (mm) S (%) Pij for W Pij for S Pi × 103 Rank

1 1 1 1 1 1 4.177 2.009 0.0552 0.0498 2.7469 12
2 1 2 2 2 2 3.701 1.732 0.0606 0.0587 3.5541 8
3 1 3 3 3 3 1.560 0.765 0.0847 0.0898 7.6099 2
4 1 4 4 4 4 0.807 0.637 0.0932 0.0939 8.7566 1
5 2 1 2 3 4 3.432 1.348 0.0636 0.0710 4.5181 7
6 2 2 1 4 3 4.449 1.590 0.0521 0.0633 3.2966 10
7 2 3 4 1 2 1.857 1.200 0.0814 0.0758 6.1689 3
8 2 4 3 2 1 3.639 2.178 0.0613 0.0443 2.7161 13
9 3 1 3 4 2 2.882 1.042 0.0698 0.0809 5.6466 4
10 3 2 4 3 1 2.546 1.225 0.0736 0.0750 5.5201 6
11 3 3 1 2 4 4.468 2.193 0.0519 0.0439 2.2761 14
12 3 4 2 1 3 3.864 2.919 0.0587 0.0205 1.2035 15
13 4 1 4 2 3 2.506 1.170 0.0741 0.0768 5.6850 5
14 4 2 3 1 4 3.475 1.930 0.0631 0.0523 3.3018 9
15 4 3 2 4 1 4.850 2.065 0.0476 0.0480 2.2829 11
16 4 4 1 3 2 8.258 1.812 0.0091 0.0561 0.5112 16

“analysis of the signal to noise ratio” [8, 10, 11], which
are not fully quantitative, but empirical ones instead.
In this section, the probability theory-based me-

thod is used to conduct the multi-objective orthogonal
test design problem quantitatively.

2.3.3.1. Orthogonal test multi-object
optimization design for molding plastics

process of storage box

In this section, the probability theory-based me-
thod is used to deal with the multi-object orthogonal
test design for the molding plastics process of a storage
box.
Zhu et al. [11] performed the multi-object opti-

mization of the molding plastics process of storage
box with CAE software; it involves five input vari-
ables, i.e., mold temperature, melt temperature, pres-
surizing time, packing pressure, and injection time;
in addition, orthogonal test design with moldflow and
four levels are used. The volume shrink mark index

(S) and the buckling deformation (W ) are taken as
indicators of the multi targets optimization problem
[11].
The volume shrink mark index and the buckling

deformation are all unbeneficial performance indica-
tors to the technique optimization; therefore, Eqs. (3)
and (4) are applied to conduct the assessment for their
partial preferable probability.
Table 5 shows the results of the orthogonal test

design for the molding plastics process of the storage
box [11]. Table 6 represents the test results, the partial
preferable probabilities, and the total preferable prob-
abilities of the orthogonal test design for the molding
plastics process of the storage box.
Table 6 indicates the maximum of the total prefer-

able probability Pi attributes to Test 4, so Test 4
could be chosen as the optimal combination at first
glance from the multi-objective orthogonal test design
directly.
Furthermore, Table 7 shows the assessed results

of range analysis of the total preferable probabilities
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Ta b l e 7. Assessed results of range analysis of the total preferable probabilities for the orthogonal test design of molding
plastics process for storage box

Variable A B C D E

Level 1 5.6669 4.6492 2.2077 3.3553 3.3165
Level 2 4.1749 3.9182 2.8897 3.5578 3.9702
Level 3 3.6616 4.5845 4.8186 4.5398 4.4488
Level 4 2.9452 3.2969 6.5327 4.9957 4.7132
Range 2.7217 1.3523 4.3250 1.6404 1.3967
Order 2 5 1 3 4

Ta b l e 8. Results of orthogonal test design for molding plastics process of storage box

A B C D E F) G Residual Volume Buckling
Factor (◦C) (s) (s) (s) (s) (MPa) (MPa) stress shrinkage deformation

(MPa) rate (%) (mm)

Test 1 220 1.0 5 10 3 100 50 54.24 13.85 1.460
Test 2 220 1.3 10 15 4 110 55 53.97 11.48 1.378
Test 3 220 1.6 15 20 5 120 60 53.71 9.968 1.322
Test 4 230 1.0 5 15 4 120 60 54.02 14.36 1.353
Test 5 230 1.3 10 20 5 100 50 53.39 11.96 1.409
Test 6 230 1.6 15 10 3 110 55 53.93 10.49 1.392
Test 7 240 1.0 10 10 5 110 60 53.95 12.79 1.341
Test 8 240 1.3 15 15 3 120 50 53.58 10.91 1.419
Test 9 240 1.6 5 20 4 100 55 54.01 14.77 1.330
Test 10 220 1.0 15 20 4 110 50 53.22 10.73 1.448
Test 11 220 1.3 5 10 5 120 55 54.35 13.69 1.395
Test 12 220 1.6 10 15 3 100 60 54.40 11.45 1.293
Test 13 230 1.0 10 20 3 120 55 53.72 12.01 1.390
Test 14 230 1.3 15 10 4 100 60 53.97 10.49 1.383
Test 15 230 1.6 5 15 5 110 50 53.63 14.11 1.421
Test 16 240 1.0 15 15 5 100 55 53.59 10.89 1.354
Test 17 240 1.3 5 20 3 110 60 53.97 14.82 1.385
Test 18 240 1.6 10 10 4 120 50 53.90 12.71 1.349

Notice: A, melt temperature; B, injection time; C, holding pressure time; D, cooling time; E, mold opening time;
F, injection pressure; G, holding pressure.

for the orthogonal test design of the molding plastics
process for the storage box.
The range analysis results of Table 7 show that

the order of the input variables in impact decreas-
ing is from C, A, D, E to B. The optimal combi-
nation is C4A1D4E4B1, the CAE modeling test in-
dicates that the corresponding buckling deformation
and the volume shrink mark index are 0.7323mm and
0.4241% [11], respectively, which are much less than
the minimum values of 0.8069mm and 0.6370% in the
orthogonal test design for molding plastics process of
the storage box, see Table 6.

2.3.3.2. Multi-objective optimization of the
molding plastics process of storage box

Lei et al. conducted the multi-objective optimiza-
tion of the molding plastics process of storage box with
seven input variables [12], i.e., melt temperature, in-
jection time, pressurizing time, cooling time, molding

time, injection pressure, and packing pressure. The
residual stress, the volume shrinkage rate, and the
buckling deformation are taken as the factors (indi-
cators) of the multi targets by using orthogonal test
design with moldflow [12].
The residual stress, the volume shrinkage rate, and

the buckling deformation are all unbeneficial indica-
tors to the technique optimization; therefore, Eqs. (3)
and (4) are employed to perform the assessment for
their partial preferable probability.
Table 8 cites the results of the orthogonal test de-

sign for the molding plastics process of the storage box
[12].
Table 9 presents the assessed results of the par-

tial and total preferable probabilities for the residual
stress, the volume shrinkage rate, and the buckling de-
formation assessment in the orthogonal test design of
the molding plastics process for the storage box.
In Table 9, Test 3 exhibits the maximum of the to-

tal preferable probability Pi; it could be chosen as the
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Ta b l e 9. Assessed results of partial and total preferable probabilities for the residual stress, volume shrinkage rate, and
buckling deformation in the orthogonal test design

Partial preferable probabilities Total
Alternative
No. Residual Volume Buckling Pi × 104 Rank

stress shrinkage rate deformation

Test 1 0.0552 0.0487 0.0523 1.4040 17
Test 2 0.0554 0.0592 0.0556 1.8256 8
Test 3 0.0557 0.0660 0.0579 2.1261 1
Test 4 0.0554 0.0464 0.0566 1.4552 14
Test 5 0.0560 0.0571 0.0544 1.7387 10
Test 6 0.0555 0.0636 0.0550 1.9430 4
Test 7 0.0555 0.0534 0.0571 1.6908 12
Test 8 0.0559 0.0618 0.0540 1.8605 6
Test 9 0.0554 0.0446 0.0575 1.4212 16
Test 10 0.0563 0.0626 0.0528 1.8559 7
Test 11 0.0551 0.0494 0.0549 1.4930 13
Test 12 0.0550 0.0594 0.0590 1.9273 5
Test 13 0.0557 0.0569 0.0551 1.7457 9
Test 14 0.0554 0.0636 0.0554 1.9543 2
Test 15 0.0560 0.0475 0.0539 1.4280 15
Test 16 0.0558 0.0619 0.0566 1.9536 3
Test 17 0.0554 0.0444 0.0553 1.3605 18
Test 18 0.0555 0.0538 0.0568 1.6940 11

Ta b l e 10. Assessed results of range analysis of the total preferable probabilities for the orthogonal test design of molding
plastics process for storage box

Level A B C D E F G

Level 1 1.7720 1.6842 1.4270 1.6965 1.7068 1.7332 1.6635
Level 2 1.7108 1.7054 1.7704 1.7420 1.7010 1.6840 1.7303
Level 3 1.6634 1.7566 1.9489 1.7080 1.7384 1.7291 1.7524
Range 0.1085 0.0724 0.5219 0.0452 0.0373 0.0492 0.0889
Order 2 4 1 6 7 5 3

optimal combination in the multi-objective orthogonal
test design directly.
Table 10 presents the assessed results of range anal-

ysis of the total preferable probabilities for the orthog-
onal test design of the molding plastics process for the
storage box.
The range analysis of the data in Table 7 shows

that the order of the input variables for impact de-
creasing is from C, A, G, B, F, D, to E. The opti-
mal combination is C3A1G3B3F1D2E3, which coin-
cides with the result of the complex comprehensive
balance method in the multi-objective orthogonal test
design accidentally [12].

2.3.3.3. Multi-objective optimization on
strengthening plate of automobile body during
drawing process based on orthogonal test

Gou et al. dealt with the problems of crack and
wrinkle of the strengthening steel B280VK plate with
the thickness of 1.2 mm in automobile body during

drawing process by using orthogonal test design for
the multi-objective optimization issue [13]. The crack
evaluation function Φ1 and wrinkle evaluation func-
tion Φ2 were taken as the objective factors, and the
blank holding force F (A), friction coefficient μ (B),
resistance coefficients C and D for draw beads loads
P1 and P2 were taken as input variables, then the or-
thogonal test design was conducted.
Table 11 presents the results of the strengthening

plate of the automobile body during the drawing pro-
cess based on the orthogonal test [13].
Since the crack evaluation function Φ1 and wrinkle

evaluation function Φ2 are unbeneficial type factors
to the technique optimization, Eqs. (3) and (4) are
employed to perform the assessment for their partial
favorable probability.
Table 12 presents the assessed results of the partial

and total preferable probabilities for the crack evalu-
ation function Φ1 and wrinkle evaluation function Φ2
in the orthogonal test design.
In Table 12, Test 5 exhibits the maximum of the to-
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Ta b l e 11. Results of the strengthening plate of automobile body during drawing process based on orthogonal test [13]

Input variable Object
No.

A B C D Φ1 Φ2

1 160 0.15 0.05 0.40 0.943 0.132
2 150 0.15 0.15 0.30 0.898 0.120
3 140 0.18 0.15 0.40 1.103 0.138
4 160 0.12 0.15 0.35 0.824 0.129
5 140 0.12 0.05 0.30 0.833 0.114
6 160 0.18 0.10 0.30 3.420 0.131
7 140 0.15 0.10 0.35 0.887 0.134
8 150 0.12 0.10 0.40 0.794 0.142
9 150 0.18 0.05 0.35 1.202 0.122

Notice: A, blank holding force F ; B, friction coefficient µ; C, resistance coefficient for P1; D, resistance coefficient for P2.

Ta b l e 12. Assessed results of the partial and total preferable probabilities for the crack evaluation function Φ1 and
wrinkle evaluation function Φ2 in the orthogonal test design

Partial preferable probability Total
No.

Φ1 Φ2 Pi × 102 Rank

1 0.1210 0.1086 1.3144 6
2 0.1227 0.1191 1.4614 2
3 0.1151 0.1033 1.1896 9
4 0.1255 0.1112 1.3952 3
5 0.1251 0.1243 1.5558 1
6 0.0294 0.1095 0.3217 4
7 0.1231 0.1068 1.3154 5
8 0.1266 0.0998 1.2635 8
9 0.1115 0.1173 1.3080 7

Ta b l e 13. Assessed results of range analysis of the total preferable probabilities of the strengthening plate during drawing
process based on orthogonal test

Level A B C D

Level 1 1.3536 1.4048 1.3927 1.1129
Level 2 1.3442 1.3637 0.9668 1.3395
Level 3 1.0104 0.9397 1.3487 1.2559
Range 0.3432 0.4651 0.4259 0.2265
Order 3 1 2 4

tal preferable probability Pi; it could be chosen as the
optimal combination in the multi-objective orthogonal
test design directly.
Table 13 presents the assessed results of range anal-

ysis of the preferable probabilities of the strengthening
plate during the drawing process based on the orthog-
onal test.
From the range analysis data in Table 13, it can

be seen that the order of the input variables for im-
pact decreasing is from B, C, A to D. The optimal
combination is B1C1A1D2, which coincides with the
result of the complex comprehensive balance method
in the multi-objective orthogonal test design by chance
[13].

4. Conclusions

The probability theory-based method for simul-
taneous optimization of multi-object orthogonal test
design in material engineering is developed from the
above discussion. Each utility index contributes to a
partial preferable probability in the assessment quan-
titatively; the total preferable probability of a candi-
date alternative is the product of all partial preferable
probabilities, which thus naturally transfers the multi-
objective problem into a single objective problem. Fi-
nally, the total preferable probabilities of all alterna-
tives are used to comprehensively complete range anal-
ysis and thus the multi-object orthogonal test design.
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The assessed results of the typical examples indicate
the validity.
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