Kovove Mater. 45 2007 81-84 81

Atomic calculation of elastic constants for fcc metals:
ab-initio and semiempirical approach

K. Kocigkova*, P. Ballo

Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology,
Ilkovicova 3, 812 19 Bratislava, Slovak Republic

Received 2 June 2006, received in revised form 4 December 2006, accepted 4 December 2006

Abstract

We demonstrate a quality of ab initio pseudopotential and semiempirical embedding atom
method potential for three monoatomic fcc metals: copper, nickel and aluminium. The po-
tentials are tested by computing basic equilibrium bulk properties, namely equilibrium lattice
constant, bulk modulus and three second-order elastic constants. Two different approxima-
tions for ab initio calculation are used. The obtained results have proved that tests of potential
ability to reproduce the bulk properties are necessary for further computer modelling of more
complex phenomena in metals such as defects or alternative structure phases.
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1. Introduction

Despite the great progress in experimental manipu-
lation and observation at atomic level these techniques
have still many limitations. Contemporary progress
in high-end computing offers the ability to examine
many details at nanoscopic level. Today, we believe
that the most precise results are obtained from com-
putational experiments, which are based on pure prin-
ciples (ab initio techniques) and use only numerical
approximations. Calculations based on such principles
have become one of the biggest consumers of time on
high performance computers around the world. For
this in some cases we should use compromises that go
beyond ab initio techniques but work with first prin-
ciples accuracy. The compromises are based on fitting
parameters determined from experimental or ab ini-
tio results. There is no doubt that numerical comput-
ing paves the way for modern technologies on nano-
scale techniques (including ab initio). The accuracy
of computed results mainly depends on the quality of
used parameters. Therefore the aim of this paper is to
present the evidence that well-parametrized numerical
experiment is able to describe a variety of bulk prop-
erties.

2. Methodology

Mechanical properties of a perfect solid can be
characterized by the elasticity tensor. The tensor con-
tains 81 elements but these could be reduced due to
symmetry. For cubic symmetry the tensor is reduced
to three second-order independent elements assigned
as Ci1, C12 and Cyy [1]. In this work we focused on in-
vestigation of bulk modulus, tetragonal shear constant
and elastic constants Cy; and Cjs.

If we choose the strain

62(71)71771)070)0)’ (1)

where 1 is component of strain e, the bulk modulus
B can be computed in volume non-conserving way as

d*U
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where Vj is volume per atom, V is volume, U is total
energy.

Then tetragonal shear constant C’ after applied
strain
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is calculated in volume conserving way due to follow-
ing formula
d2U
C'=Vy —. 4
0T ave )
Using these definitions of B and C’ we can calculate
following elastic constants:

proximation (GGA). In this project we used ABINIT
computational code. In the case of LDA, Teter-Pade
parametrization of exchange and correlation energy of
valence electron was applied and the tested scattering
properties of ion cores are represented by Goedecker,
Teter and Huetter (LDA1) or Fritz-Haber Institute
LDA (LDA2) pseudopotentials. For GGA we con-
sidered Perdew-Burke-Ernzerhof functional [10] to ap-

Cin = (3B+4C") /3, (5) proximate an exchange and correlation energy to-
gether with Fritz-Haber Institute GGA pseudopo-
C12 = (3B —2C") /3. (6) tential (GGA1) and OPIUM generated pseudopoten-

The atomic interaction in a solid is described by many-
-body potential. Our calculations were performed in
the framework of Density Functional Theory (DFT)
as well as Embedded Atom Method (EAM).

In ab-initio simulation, the bonding is represented
by solving the non-relativistic quantum-mechanical
Schrodinger equation for an interacting many-electron
system. The quantum-mechanical calculations are per-
formed within total energy pseudopotential method
in which the only required input is the atomic num-
ber of given atom type and some fundamental con-
stants. The only approximations in this method are
DFT approximations, an exchange and correlation
energy of valence electrons known as Local Dens-
ity Approximation (LDA) and General Gradient Ap-

tial (GGA2). The Kohn-Sham wave functions are ex-
panded in plane waves with a kinetic energy cut
up to 70 Ha. The sampling of the Brillouin zone
was accomplished by an 8 x 8 x 8 Monkhorst-
-Pack scheme and we use the highest amount of
k-points.

Semiempirical EAM calculations were based on po-
tentials developed by Mishin and co-workers [8, 9]. For
this potential, each atom in a solid is viewed as an im-
purity embedded in a host comprising all other atoms
[11]. The energy for an n-atom system then can be
written as

Table 1. Structure and elastic properties of fcc copper computed by DFT technique

Copper
This work ab-initio results
Ab-initio® Experiment
LDA1 GGA1l GGA2
a (A) 3.599 3.711 3.695 3.610 3.62°
B (GPa) 158.0 117.0 113.0 153.0-190.0 138.3°
C’ (GPa) 37.0 37.0 38.0 25.0-27.2 23.8¢
C11 (GPa) 207.0 166.0 164.0 193.0 170.0°
Ci2 (GPa) 133.0 92.1 87.0 133.0 122.5¢
* 15, [6], © [7]
Table 2. Structure and elastic properties of fcc nickel computed by DFT technique
Nickel
This work ab-initio results
Experiment
LDA1 LDA2 GGA1l GGA2
a (A) 3.422 3.520 3.643 3.622 3.52%
B (GPa) 200.0 191.0 141.0 137.0 181.0°
C’ (GPa) 68.0 45.0 64.4 49.0 55.5°
C11 (GPa) 290.0 249.0 226.0 203.0 262.0°
Ci2 (GPa) 154.0 161.0 98.0 105.0 151.0°

* (6], ® [7]
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Table 3. Structure and elastic properties of fcc alu-
minium computed by DFT technique

Aluminium

This work ab-initio results

Experiment

LDA1 GGA1
a (A) 3.991 4.048 4.05
B (GPa) 81.4 76.7 79.0°
C' (GPa) 20.0 22.0 23.0°
C11 (GPa) 107.0 105.3 108.0°
Ci2 (GPa) 68.0 62.4 62.0°
* 16, * [7]

where the energy of single i-th atom is given by:

Ei=g 3 @) + Flpo). ®)
J(3#1)

Here, r;; is the scalar distance between atoms ¢ and
J, @(rj) is a pairwise interaction potential, and p; is
the density at é-th atomic site due to all neighbours
(located within a sphere of radius rcutoft):

pi= Y p(rij). 9)

3(G#7)

The embedding function F(p;) can be interpreted as
the energy arising from embedding #th atom in an
electron gas of density p; [12]. For simulation, 27 su-
percells were used with total number of 4320 atoms of
copper in combination with Born-von Karman peri-
odic border condition. Both techniques were applied
on pure fcc metals. The equilibrium lattice constant
and bulk modulus were determined by calculating the
energy per supercell as a function of lattice parameter.
The data points were fitted by Birch fitting procedure

[13] in case of ab initio results and EAM data were
fitted by a quadratic polynomial using least-squares
method. Elastic constants C’, C;; and Cj2 were com-
puted due to deformation which they perform. The
results are shown in Tables 1 to 4.

3. Discussion

In the framework of both simulation tests first step
includes calculation of equilibrium lattice constant of
solid as a function of total energy. There is observed a
well-known fact in ab initio concept concerning un-
derestimation or overestimation of lattice constant
depending on type of used approximation (LDA or
GGA). This work confirmed this fact in most of our
calculated results. As mentioned earlier, in order to
fit the gained data we used non-harmonic Birch fit-
ting functions because using harmonic polynomial fit
for calculated ab initio data significantly shifted the
value of equilibrium lattice constant toward incorrect
value. An important dependence came out of comput-
ing bulk modulus and C’ for the same number of k-
points. In order to sample the reciprocal space of given
structure we used 512 k-points. It has been shown that
this experiment requires the same number of k-points
for calculation of lattice constant as for calculation of
C’. When ignoring this phenomenon, we have found
senseless metastable phases of structure under invest-
igation. In term of computing power and time, con-
summation is rising with complexity of solid’s valence
band. For example, Ni and Cu required Ecut of 60.00
and 70.00 Hartree because of d-electrons in the valence
sphere.

The EAM potential used in this study was con-
structed on large set of experimental and ab initio
database [17]. The accuracy of computed results de-
pends on quality of embedding functions and on its
ability to threat electron density in local coordination
[14]. The computed lattice constant, bulk modulus,
C’, C11 and Ci, for copper are in a very good agree-

Table 4. Results of EAM calculation for considered fcc metal

EAM results

Aluminium Copper Nickel
This work EAM?* Exp. This work EAM? Exp. This work EAM?* Exp.
a(A) 4.05 4.05 4.05° 3.615 3.615 3.62° 3.52 3.52 3.52°
B (GPa) 77.0 79.0 79.0° 137.0 138.3 138.3¢ 184.0 181.0 181.0°
C’ (GPa) 16.6 26.1 23.0° 23.7 23.7 23.8° 32.67 49.5 55.5¢
C11 (GPa) 98.5 114.0 108.0° 168.6 169.9 170° 228.0 247.0 262.0°¢
Ci2 (GPa) 66.0 61.6 62.0° 121.2 122.6 122.5° 163.0 148.0 151.0°

* 8], > [6], © [7], ¢ [9]
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ment with experimental results. It has been proved
that EAM deals with transition metals with nearly
filled or nearly empty d bands quite well [15]. Elastic
constants C’, C1; and Cj» of nickel display small devi-
ation comparing to other EAM and experimental res-
ults. This implies the motivation in further improving
of database and parametrization of used nickel EAM
potential. The deviation in C’ for aluminium poses
the same trend in development of EAM potential but
it is necessary to mention that aluminium is a metal
which has anomalous elastic behaviour [16] because of
its directional bonding. Results of this computer ex-
periment strongly support the concept of EAM and
ab initio DF'T combination as a promising tool for de-
scribing the solid’s properties at nanoscopic level.

4. Conclusion

We have studied the second order elastic constant
for fcc metals. The results showed that experiments
based on EAM potential give reliable results. Com-
puted values of lattice parameter and elastic constants
for tested metals give very good agreement with exper-
imental data. Insufficient parametrization EAM po-
tential for aluminium and nickel caused small devi-
ation in elastic constant C’. Calculations based on ab
initio technique in combination with both approxima-
tions (LDA and GGA) pose under- and overestimated
lattice parameter. The value of elastic constant is over-
and underestimated related to experimental result.
The effect is well observed and is in good agreement
with results of other studies. However, good results
in comparison with experiment may be regarded as
demonstration that the resulting error in elastic con-
stants C’, C1; and Cis is not serious. Despite the fact
that an ab initio approach needs much more computa-
tion power and time, its rigorous application, accuracy
and consistent prediction for real system are indisput-
able. The technique based on EAM is less consuming
in computation and one could not deny the qualitative
accuracy of such method applied to metallic materials.
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