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SIMULATING GRAIN SIZE ESTIMATION

IVAN SAXL', KATARINA SULLEIOVA2, PETR PONIZIL3

3D Voronoi tessellations generated by four point processes with widely different cell
size distributions have been chosen as the models of the polycrystalline grain structure.
Simulated planar and line sections have been then examined by manual analysis and by
computerized analogy of automatic image analysis. The grain size estimation procedures
recommended by the ASTM Standards are compared with the known values obtained by
medium scale stochastic simulations. Finally, a new approximate method of estimating
the mean grain volume is proposed.

Key words: grain size estimation, ASTM Standards, Voronoi tessellations, computer
simulation

SIMULACE ODHADU VELIKOSTI ZRNA

Prostorové Voronoiovy teselace generované ¢tyimi bodovymi procesy s vyrazné roz-
dilnym rozdélenim velikosti cel byly vybrany jako modely zrn polykrystalu. Pocitacové
simulované rovinné a lineadrni fezy byly pak proméfeny jednak manudlné, jednak po-
¢itacové simulovanou analogii automatické obrazové analyzy. Metody odhadu velikosti
zrna doporucené ASTM byly porovnany s hodnotami ziskanymi poéitadovymi simulacemi
stfedniho rozsahu. Zavérem je navrzena metoda zpiesnéni téchto odhadd.

1. Introduction

3D grain size estimation from a partial information available by examining
planar or line section of opaque materials is an important problem in science as
well as in technical practice. In the latter case, the national standards more or
less similar to the ASTM E-112 standards (see [1]) are obligatory whereas more
sophisticated methods based on various approximate relations are used in research
laboratories (for a review see [2]). However, the both approaches include several
assumptions concerning shape and size distributions of space filling grains which
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are usually only vaguely stated and their justification is, in general, hardly possible.
A peculiar feature of this topic is that even a completely unrealistic assumptions
(e.g. that all grain profiles are congruent circles or all profile chords are isotropic
uniform random chords of a system of congruent balls) can sometimes lead to rea-
sonable conclusions valid in a wide range of grain structures occurring in practice.
Nevertheless, leaving aside 3D probes of the disector type [3], the true 3D grain
structure can never be completely restored and, consequently, the outcome of the
estimation based on planar or line data is always doubtful.

Stochastic simulations suggest a unique possibility to tackle the problem from
another side. First a model of grain structure — a spatial tessellation [4] — is
generated and its planar and line sections (2D and 1D tessellations induced by
the original 3D tessellation) are constructed. Then the geometrical properties of
all these three tessellations are determined with a sufficient accuracy. As the first
approximation of grain structures, the well known Voronoi tessellations formed
by polygonal convex cells can be used. An extensive database of Voronoi cell
properties has been created by the authors and is exposed on the Internet [5]. It
includes regular isohedral tessellations formed by translation equivalent cells (the
term tiling instead of tessellation is usually used in this case) as well as multimodal
cell systems generated by point cluster fields. Consequently, everything is known
here and the acceptability of various approximate relations between the original
and induced tessellations can be simply verified. A simple graphical tool — w-s
diagram — was devised in order to illustrate the relations between the original and
induced cell properties and is described at length in [6].

Whereas samples of considerable size (typically ~ 10° realizations with =~ 103
cells in each of them) were used to compute the above mentioned database, much
smaller samples of several hundreds of profiles at most are usually available for
either manual or automatic (image) analysis of real material sections and, moreover,
the measurement error cannot be in either case neglected. The purpose of the
present paper is to compare the results obtained by medium-scale simulation with
those ones acquired by manual analysis of computer generated section images and
by a somewhat artificial computerized model of the high resolution automatic image
analysis.

2. Simulated tessellations

The Voronoi tessellations of various kind are generated from a point pattern
X = {z} by adjoining to any of its point z a union (called the cell) of all points y
of the embedding space that lie closer to z than to any other point of the pattern;
the boundary of the cell is formed by points y with the same spacing to more than
one point of X. The most important cell (grain) size characteristics are cell volume
v, surface s, mean breadth w (also the mean calliper or Feret diameter), induced
cell (profile) area a, and chord (intercept) length [. Tessellation intensities or
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densities (the mean numbers of features per unit content of the space) are A = 1/Ev
for grains, A = 1/Ea for profiles, A = 1/El for chords. Their estimators are
[A'] = Na, [N'] = Ni, where Ny is the number of observed profiles per unit area
of a section plane and Ny, is the number of profile chords per unit length of a test
line.

Four point patterns (frequently called the point processes or point fields [7])
have been selected in the present study. The first of them is derived from the
face-centred cubic lattice by giving to any its point an independent identically
distributed (i.i.d.) random shift — hence the term displaced lattice. The shift dis-
tribution is 3D normal N (0, X?), £2 = u2Z, where 7 is the unit matrix. The choice
of u = 0.2 (in the units of the nearest neighbour distance of lattice points) produces
the tessellation in which the cells of the originally isohedral tiling by rhombic dode-
cahedrons are heavily randomly corrugated. The tessellation is denoted by Bef-0.2
(Bcf means Bookstein model [8] on a cubic face centred lattice).

The second grain structure model is the Poisson-Voronoi tessellation (PVT)
generated by the stationary Poisson point process (PPP), which is roughly speaking
a limit case of a uniform random arrangement of points on a bounded area.

Two remaining processes are point cluster fields based on PPP. Let the point
cluster be a random bounded n-tuple of points with n being Poisson distributed
with the mean En = N; the cluster is called globular (G) if the points are dis-
tributed uniformly at random within a ball of diameter « and spherical (S) if they
lie only on the ball surface (v is usually given in the units of the mean nearest
neighbour distance p, of the parent process) [9]. Let now be any point of the
parent PPP replaced by a random cluster with a probability 0 < p < 1. The
resulting point process will be called the Bernoulli cluster field [10]. The choice
of p = 1 produces a standard Neyman-Scott process [7], whereas the original PPP
results if p = 0. The choice p =1, v = 2 and N = 30 gives rather large dissolved
intermixed clusters — the notation is PG30. The distribution of the cell volume in
the resulting tessellations is mildly bimodal with the ratio of modes 1:8 [9]. The
last tessellation is generated by the Bernoulli cluster field with p = 0.5, v = 0.05,
N = 70 and spherical clusters — BePS70. The tessellation then consists of a 1:1
mixture of large, slightly corrugated parent cells and of such cells fragmented into
n small elongated and wedge-like pieces. The distribution of the cell volume is
again roughly bimodal with the mode ratio 1:70 (see [10]).

Selected characteristics of examined 3D tessellations and their induced 2D and
1D tessellations are shown in Table 1 (denoted by “sim”). They have been obtained
by medium size (10° <+ 10° cells or profiles) computer simulations — for details see
[5, 9]. All tessellations are unit and the differences in the mean profile areas Ea and
chord lengths Ew are small. On the other hand, the covered ranges of coefficients
of variation are quite considerable: the ratios of the smallest to the highest values
are about 1:23 for CV v and roughly about 1:4 for CVa and 1:2 for CV .
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Fig. 1. Planar sections of examined 3D tessellations selected for simultaneous computer
(profile area evaluation) and manual analysis (profile count and intercept length measure-
ment). Four such samples of BePS70 were analysed in order to suppress their insufficient

homogeneity.

The differences in coefficients of variation are drastically reduced in induced
tessellations; nevertheless they are still much greater than the differences in the
mean values of profile characteristics which are usually the exclusive object of

estimation in technical practice.

The planar sections of the four examined 3D

tessellations are presented in Fig. 1, several features of tessellations mentioned

above are discernible there.
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Table 1. Estimated values of induced tessellation characteristics obtained by simulation
(sim.) and by manual and computerized analyses (bold)

Not. | Type CVuw Ea CVa El cvi c
[Ealn, | [CVala | [Ea]n, | [Elln, | [CV 11 | [c]n,, Ny
A Bef-0.2 sim. 0.20 0.70 0.60 — 0.71 0.53 0.72
measured — 0.71 0.63 0.75 0.73 0.46 0.71
B PVT sim. 0.42 0.69 0.70 =3 0.69 0.58 0.69
measured — 0.72 0.76 0.77 0.69 0.56 0.62
C PG30 sim. 1.10 0.72 0.99 — 0.71 0.67 0.70
measured - 0.69 0.97 0.72 0.76 0.63 0.80
D BePS70 sim. | 4.50 0.67 2.72 = 0.77 1.15 0.88
measured* - 0.91 2.52 0.78 0.89 1.04 0.91

* four sections examined

3. Methods of estimation and results

In general, the recommendations of the ASTM E 112-82 “Standard methods
for determining average grain size” have been followed. The number of profiles after
the edge correction is Ny = (nq +ny/2 — 1)/W, where n; is the number of profiles
~ lying within the observing window of area W and ng is the number of profiles
intersecting the rectangle boundary. The tessellations have been produced in a
unit cube, the expected number of generated points was 15 000 which'is the volume
of this cube in the scale of unit tessellations. The edge effect has been carefully
removed and the measurement was made only in the inner part of the cube. The
point processes based on PPP are isotropic, whereas random orientations of the
displaced generating lattices with respect to cube orientation were chosen in the
anisotropic case A. The planar sections are squares of the size 0.6x0.6 in the unit
cube, or, of the area of W = 219 (in the units corresponding to Ny = 1). The
sections shown in Fig. 1 have been analysed manually as well as directly in the
computer by imitating the procedure of the automatic image analysis (see below) —
the results are summarized in Table 1, where also the shortened notation A, B, C,
D is introduced (the subscripts of the estimator brackets denote the experimentally
accessible quantity used to obtain the estimate).

a) Profile areas (Jeffries procedure)

The numbers of grains n;,ns have been simultaneously determined by manual
and computer analysis; the areas a; of individual profiles have also been estimated
in the latter case. The estimator [N]n, = [1/Ea]n, = Na was used in the both
cases. The number of examined profiles was W/Ea ~ 300 per section and the
coefficient of error CE of the estimated mean Ea was then 0.06 CV a, i.e. 0.036 for
the specimen A and 0.08 for specimen D with four examined sections.
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Profile areas have been measured by means of a computerized image analysis
(see below). In order to include also the profiles intersecting the boundary of the
observing window, the areas a) of incomplete profiles have been randomly paired
and CV a estimated as the mean value of sample coeflicients of variation corre-
sponding to 10 such random pairings (Table 1). ([Ea]n, = 1/Na is the estimator
used in manual analysis). One such a random pairing was used to estimate also
the probability density functions f(z) of profile areas by means of Epanechnikov
kernel estimator [8] with the band width h = 0.25 (Fig. 2).
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Fig. 2. Probability density functions f(x) of the profile area a in the section plane obtained
by simulations (dashed) and kernel estimates of f(x) obtained by computer evaluation
of bitmaps of sections. Epanechnikov kernel estimator [8] with h = 0.25 was used for all
cases but BePS70.

b) Line intercepts (Heyn method)

The estimator [\']n, = [1/El]n, = N was used and CV [ estimated by
the sample coefficient of variation. Typically, about 140 chords per section were
measured, thus giving the coefficient of error CE of the mean El approximately
0.08 CV1 (0.04CV for the type D with four examined sections and 800 chords).

The edge effects have been excluded similarly as in the case of profile areas,
namely the test lines crossing the whole observing window have been used and the
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incomplete segments at the ends of test lines have been randomly paired. CV [
and the probability density function f(z) of chord lengths have been estimated
similarly (Fig. 3).
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Fig. 3. Probability density functions f(z) of the intercept length ! obtained by simulations

(dotted) and kernel estimates of f(z) obtained by manual linear intercept method (full
line); Epanechnikov kernel estimator with the band width h = 0.25 [8].

¢) Computerized image analysis

The analysis was processed on simulated images of sections shown in Fig. 1,
in the case of BePS70 other three planar sections have been added in order to
suppress the large-scale inhomogeneity but even this turned out to be insufficient.
Resolution of images was 6000 x 6000 pixels. The profile area was determined
as the number P of pixels forming the profile; the average number of pixels per
profile was &~ 1.2 x 105. The effect of the finite boundary trace thickness has been
corrected by assuming that the measured profiles just fill the observing window.
The numerical results are again in Table 1.
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d) Relation between X' and X' - factor c

The basic stereological equation (see e.g. [2, 7]) gives X' = ¢(\")? with the
scale invariant factor ¢ = A"'Ew/(Es/4)?. Hence the factor ¢ can be calculated
directly from simulations, estimated by [c]n,,n, = Na/N{ and, finally, compared
with the value ecastm = 1/1.26 = 0.7937 postulated by the ASTM Standards.
Values of ¢ obtained by simulations and by manual analysis are shown in Table 1.

e) Estimation of 3D cell intensity A — factors ¢ and "

The basic stereological equations (see e.g. [2, 7]) give two estimators of A:
An, = c’NX/ > and [Ny, = "N}, where the scale independent factors ¢’ =
= 1/\/MEw)3 and ¢’ = \72(Es/4)~3 can be calculated from simulations. They
cannot be estimated from the sections and their theoretical values are known only
for isohedral tilings by cells of given shape (tetrakaidecahedrons, rhombic dodeca-
hedrons, cubes, hexagonal prisms etc.) and for few random tessellations (PVT, De-
launey tessellation). ASTM Standards postulate ¢’ = 0.8 (or 0.81) and ¢" = 0.57,
whereas CZ and SK Standards set ¢ = 1, ¢’ = 0.7. These values differ consid-
erably from the correct values ¢l ,cli . obtained by simulations (Table 2). The
simulated as well as the ASTM recommended values are used to estimate the true
spatial intensity A = 1 from N4, N1, obtained by computerized image and manual
analyses. The results are summarized in Table 2 (bold letters denote the estimates
by computerized analysis).

Table 2. Values of factors ¢’,c” obtained by simulations and estimated cell intensity of
the unit 3D tessellations

dsim [)‘] Na [/\]QSATM [)‘] Na [/\]giTM cls/im [)‘] NL P‘] %ISATM
Bef-0.2 0.591 0.99 1.36 0.91 1.25 0.36 0.91 1.44
PVT 0.568 0.93 1.33 0.99 1.41 0.33 0.84 1.45
PG30 0.60 1.05 141 0.98 1.32 0.36 0.83 1.45
BePS70* 0.55 0.63 0.93 0.67 0.99 0.46 0.65 0.81

* four sections examined

f) Estimation of CVwv

The approximate relation CV v = 0.948 + 1.4641n(CV a) was proposed and
tested in [2] to be valid for tessellations generated by displaced lattices and PS
cluster fields. A similar relation for profile chords would be CVv = 1.674 +
+2.251In(CV ). The both relations are approximately valid only in a relatively
narrow range 0.53 < CV a < 0.9, 0.47 < CVI < 0.7. The lower bounds of these in-
tervals are the values corresponding to the isohedral tilings by tetrakaidecahedrons
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Table 3. Estimated values of the coefficients of variation CV v

Type CVo [CV v]cv.a [CV v]cv.a [CV v]eva [CV v]cv,.
A 0.20 0.20 0.27 0.24 0
B 0.42 0.43 0.55 0.45 0.37
C 1.1 0.93 0.90 0.77 0.56
D 4.5 2.40 2.30 1.98 1.76

(the Voronoi tessellation generated by the body-centred cubic lattice) and can be
considered as the lowest attainable values of the coefficients of variation.

The estimates of CV v shown in Table 3 were obtained by using these relations
from CVga, CV;l obtained by simulations, from CV.a obtained by computerized
analysis and from CV,,l obtained by manual analysis.

4. Discussion
a) w-s diagram

A useful tool of the analysis is the above-mentioned w-s diagram [6], the
relevant section of which is shown in Fig. 4. Each tessellation is represented by

08 07 0.6 05
T T T 7 T

Fig. 4. A section of the w-s diagram containing examined and selected unit tessellations.
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a point [Ew,Es]. The isohedral tiling by rhombic dodecahedrons generated by
the unit face-centred lattice is denoted by the diamond symbol near the centre of
the figure and the dotted line joining it with the point representing the Poisson-
-Voronoi tessellation (denoted by PVT) represents Bookstein model on this lattice
with 0 < w < 10. Further, the dash-dotted line starting in the PVT point is
the Johnson-Mehl model [11] with the variable nucleation intensity I(t) = at?~!
(only the segment corresponding to 0 < 8 < 2.5 is depicted). Thick diagonal line
(full line denoted PG near its left end and dashed line denoted PS at its right
end) describes tessellations generated by Poisson cluster fields; the cluster size is
6 = 0.05 in the units of the parent Poisson point process and the mean cluster
cardinality is 1 < N < 40 for globular clusters (PG) and 1 < N < 50 for spherical
(PS) clusters. The two loops lying below the figure diagonal are theoretical BePS
tessellations with v = 0.05, N = 30, 70 (see [10]). The shrinkage of loops takes
place when < increases whereas they blow up moderately in the opposite case. The
points denoted 30 and 70 show the positions of the tessellations with the maximum
CV v, which correspond to the choice p = 0.5. The point corresponding to the
ASTM is shown as the black circle at [1.15, 4.84]; the CZ and SK Standard point
[1, 4.5] is out of the figure. The dashed net are the curves ¢ = const.

Moreover, the non-linear scale ¢’, ¢’ with its own bold ticks is sketched. It was
shown by Horélek [12] that the non-homogeneous Johnson-Mehl model with 3 ~ 2
approximately corresponds to the factors ¢, ¢, ¢ postulated by ASTM. Finally, the
examined tessellations are denoted by the black points and letters A, B, C, D (the
values of Ew, Es obtained by simulations are used).

The inspection of the w-s diagram illustrates the similarity between all con-
sidered tessellations in the values of the mean breadth Ew but a distinct difference
in the values of Es between the tessellations A, B, C (equiaxial cells) and D (flat,
rod-like and wedge-like cells).

b) Probability density functions of profile areas and chord lengths

The prominent feature of estimated pdf’s (Figs. 2, 3) is the loss of small
profiles. This deficit is perhaps more important in planar count. Fig. 3 shows
that in contrast to a general belief, pdf’s of profile area are bimodal with a very
pronounced mode near zero. It corresponds to cell sections produced by section
planes passing near cell vertices or edges which are nearly parallel to them. A
rough estimate of this loss is about 6% for tessellations A, B, C and between 10
and 20% for BePS70 (even when several sections are combined in this case). The
large inhomogeneity of BePS70 sections is perhaps responsible for such a large
loss of small profiles that would be otherwise hardly acceptable in computerized
analysis with such a high resolution power. In the two isotropic cases B, C, a
substantial improvement would be achieved by increasing the number of measured
features. However, one goal of the present analysis is to show that rather reliable



406 KOVOVE MATERIALY, 39, 2001, & 6

estimates of pdf’s are attainable with a minimum effort of evaluating about few
hundreds of features (note that the estimates of the true densities are based on the
data obtained from samples containing ~ 10° cells and profiles.

¢) Estimation of planar and line characteristics

The estimated intensities A, A" and their reciprocal values Ea, El seem to
be slightly biased and the above discussed loss of small profiles is at least partly
responsible for it. Leaving the PVT section with thick lines aside, only one estimate
from twelve (PG30) gives a lower value of the mean feature size. Hence the profile
areas and chord lengths are systematically overestimated and the intensities are
underestimated. It holds under the assumption that the magnitude of the bias b is
of the order of the difference between simulated values and values estimated by the
measurement (Table 1) that for the tessellations A, B, Cis b([Ea]n,) € (2,4) [%] of
the correct feature size for the computerized analysis and b([Ea]n, ) € (0,10) [%)]
for manual analysis. Similarly, b([El]n,) € (0,7) [%]. The range of this bias is
(12,26) [%)] for the tessellation D.

On the contrary, the estimates of the factor ¢ seem to be unbiased (the bias
of the both X', A" has the same sign) and the difference Ac between simulated and
measured values is 0 <| Ac |< 14 [%] which is an acceptable accuracy for the ratio
estimator of c.

The inaccuracy in the estimates of the coefficients of variation CVI! and CV a
is surprisingly low. The only exception is the underestimate of CV [ in Bcf-0.2
by —14%. Here the partial regularity of the section is a reasonable explanation.
Otherwise, the difference between simulated and estimated values does not exceed
10% and the ratio 2:1 of underestimates to overestimates indicates only a small
bias. This is much better result than in estimating mean values. The reliability
of estimating coeflicients of variations is an important result because they will be
useful in the estimation of spatial characteristics.

d) Estimation of spatial characteristics

Table 2 presents the estimates of A according to recommendations of the ASTM
Standards ([A\J25™) and by using the values of ¢/, ¢” obtained from simulations
([A]e)- The overestimation of A amounts to 25-40% for all but the BePS70 tessel-
lation and is a necessary consequence of a considerable distance between the A, B,
C points and the ASTM point in the w-s diagram. In the case of BePS70 (D), the
ASTM estimates give nearly correct values. However, it was already shown that
the measured values of Na, N1, are heavily underestimated and thus the estimates
again prove the positive bias of the ASTM approach and testify that two incorrect
input values can produce a seemingly correct result.

Individual estimates using correct values of ¢, ¢ amplify the inaccuracies in
measured values because they are power function of Ni, Ny. Consequently, the



KOVOVE MATERIALY, 39, 2001, ¢&. 6 407

negative bias gradually increases with the growing inhomogeneity of tessellations.
However, it does not exceed —17% for A, B, C tessellations.

The estimates of the coefficients of variation CVwv (Table 3) confirm the appro-
ximate validity of empirical equations within their above specified ranges. Reliable
estimates were obtained for A, B tessellations (with one exception of [CVav]cv, 1),
acceptable underestimates for the C tessellation and only the order of magnitude
estimates for the tessellation D lying far outside the range of the formulae validity.

Finally, it will be demonstrated in which way the w-s diagram can be helpful
in the common case X when neither the true spatial grain size nor correct values
of ¢, are known. Then only the estimates of planar intensities and of planar
coefficients of variance CVxa are known. As the spatial scale A = 1 is unknown
the recourse to scale invariant quantities is necessary and the factor [cx] = Na/N?
is considered instead of the intensities. The situation is depicted in the Fig. 5. The
examined samples A, B, C, D are represented by the dashed curves ¢ = ca,...,cp,

1.2 1.3 1.4 1.5 1.6
Ew

Fig. 5. The same part of the w-s diagram as in Fig. 4 with the values of the coefficients
of variation CV a corresponding to selected tessellations and the dashed curves ¢ = const.
for the estimated values ca,...,cp (Table 1) (denoted by A, B, C, D). The ASTM point
lying close to the 1.0 point of the dash-dotted JM curve is omitted here. The point 0.63
in the right upper corner lies on the dash-dotted curve of hexagonal prisms; note that
different values of CVa can occur on different mutually intersecting curves.
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e.g. Es = 4 /cAEw. The curves Es vs. Ew representing various tessellations are
plotted in Fig. 4 together with values of CV a at selected points denoted by black
circles. Thus CV a increases when moving down along PG (thick full line) and JM
(dash-dotted line) curves as well as when moving up along PS (thick dashed line)
and Bcf (thin dashed line joining points 0.56 and 0.7, which correspond to rhombic
dodecahedral tiling and PVT, resp.) curves. CV a passes through a maximum
when moving along BePS curves (thin full lines).

Now one can start to move down along the line A keeping in the mind the
estimated value CVaya = 0.63 (Table 1). At higher values of Ew, higher values of
CV a occur on the depicted curves. The value 0.63 can be expected somewhere
near the intersection of the ¢4 and Bcf curves, i.e. the point [~ 1.42, =~ 5.65]
is tentatively assigned to the tessellation A and ¢y, = (Ew)™3/?2 = 0.60, c{ =
= (4/Es)® = 0.35 can be estimated in a reasonable agreement with the true values
in Table 2. Similar arguments lead to the assignment D: [0.6, 0.51] (the intersection
of the ¢p curve with a line joining points with CV a values 2 and 2.8 at the BePS
curves). It gives cp, = 0.6, cfy = 0.51, again in a good agreement with Table 2.

The remaining two cases are less successful because of inaccurate values of
¢B,cc. The underestimated value of cp lies in the region of hexagonal prismatic
tilings: their CVa is = 0.6 at the tip of the curve and only very slowly increases in
the upper branch intersected by the cg curve. Assigning tentatively B: [1.5, 6.2],
the estimates ¢y = 0.54, cf = 0.27 are obtained. These values would give small
(—6%) underestimate of [A]ny, and high (—20%) underestimate of [\]y, . However,
the estimated value of CVga = 0.77 is too high and the correct procedure would
be perhaps to improve the estimates of the both CVga and in particular cg by
analysing more sections. The addition of three other sections (~ 200 profiles and
chords each of them) gives much better estimate [cg] = 0.67 & 0.02.

Finally, the overestimated value of ¢c together with CVa = 0.97 would assign
approximately the ASTM values of ¢/, ¢” to the sample C with the overestimates
shown in Tab. 2. Again, the addition of three other sections gives [cc] = 0.73 +
+0.25. It may be concluded that reliable estimates are strongly dependent on the
accuracy of the estimates of the both CV a and ¢. Approximately 1000 of grains
and profiles is necessary to give a reliable estimate in sections with dispersed profile
size (CVa > 0.7).

5. Conclusions

The main results of the present simulation study can be summarized as follows:
1. Reliable estimates of mean profile areas, mean chord lengths and cor-
responding coefficients of variances can be obtained with a moderate effort (only
about 150-300 features examined) in grain structures with a low and medium grain
volume dispersion (CVa < 1, CVI < 0.7). At a higher grain volume dispersion, the
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loss of small sectional features is considerable and leads to a serious underestima-
tion of their intensities. The accuracy of estimates by manual and high resolution
image analysis is fully comparable.

2. The simultaneous application of profile and intercept counts can be used
to reveal the deviations of the true scale independent factor ¢ from the values
proposed by ASTM and other national standards. In particular, this deviation is
of the order of —10% in structures with moderate grain volume dispersions.

3. By means of the w-s diagram, the estimates of the factor ¢ and of the
coefficients of variation CV a, CV | may be used to improve the estimates of the
3D grain size intensity A obtained by the ASTM recommended approach, which
systematically overestimates A if the grain volume dispersion is moderate.
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