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COMPARISON OF REAL AND SIMULATED
POLYCRYSTALLINE GRAIN STRUCTURES

PETR PONIZIL, IVAN SAXL, MILOSLAV DRUCKMULLER,
JAROSLAV POKLUDA

The possibility to estimate grain size and grain dispersion by means of approximate
relations based on properties of various 3D tessellation is examined on planar sections of
simulated tessellations and of a real material. Estimates of the mean grain size volume
based on the mean area of planar grain profiles and on the mean intercept length are
compared and further improved by taking into account the profile area variance.

SROVNANI ZRN REALNYCH A SIMULOVANYCH
POLYKRYSTALICKYCH STRUKTUR

Na rovinnych fezech simulovanych teselaci a realnych materiali byla ovéfena moznost
odhadu velikosti a rozloZeni zrn pomoci pfibliZznych vztaht zaloZenych na vlastnostech
riznych 3D teselaci. Byly srovndny odhady stfedniho objemu zrn ziskané ze stfedni
plochy fezi zrn a stfedni délky priseciki zrn pfimkou. Tyto odhady byly déle zpfes-
nény s pouzitim rozptyli ploch Fezi zrn.

1. Introduction

From the geometrical point of view, grains can be considered as a space-filling
division of the space into cells (grains) with disjoint interiors called a spatial tessel-
lation [1-4]. Such a spatial tessellation induces a planar tessellation in any section
plane and a line tessellation in any test line. The typical problem occurring in
metallography is to infer the properties of a spatial tessellation from these induced
tessellations. Perhaps the most important quantity is the intensity of grains A (fre-
quently denoted by Ny — the mean number of grains per unit volume). Clearly,

RNDr. P. Ponizil, Technical University Brno, Faculty of Technology, ndmésti TGM
275, 762 72 Zlin, Czech Republic.

RNDr. I. Saxl, DrSc., Mathematical Institute, Academy of Sciences of the Czech
Republic, Zitna 25, 115 67 Praha, Czech Republic.

Doc. RNDr. M. Druckmiiller, CSc., Prof. RNDr. J. Pokluda, CSc., Faculty of Mechan-
ical Engineering, Technical University Brno, Technicka 2, 616 69 Brno, Czech Republic.



410 KOVOVE MATERIALY, 36, 1998, &. 6

A = 1/Ev, where Ev is the mean grain volume. A vast literature exists on the
subject, e.g. [3-11]. It is well known that the widely used linear intercept method
estimates not the “grain size” however loosely defined but the mean surface area
Sy of the grain boundaries per unit volume: [Sy] = 2\”, where the intensity \"
(frequently also Ny,) is the mean number of intersected grains per unit length of the
test line. Also the intensity A\’ of grain sections (their mean number per unit area of
the section plane) cannot be used to estimate A because of the relation \' = AEb,
where the mean width (the mean Feret or caliper diameter) b is the mean length of
projections of a grain into isotropic bundle of lines. An estimation of Eb from pla-
nar section is possible only under strict assumptions concerning the grain shapes.
Only then, the spatial grain size distribution can be estimated by so-called unfold-
ing of profile size distribution. Unfortunately, the reliability of these methods [6,
7] imitating the procedures for estimation of isolated particle size distributions is
rather poor as shown by simulation [12]. Isolated particles are primarily products
of their growth processes which produce usually simple thermodynamically stable
shapes. On the other hand, the primary goal of grains is to tessellate the space and
simple shape assumptions are not justified. Unbiased grain sampling, which gives
direct estimate of X is possible only by means of 3D probes (disector, selector etc.).
The application of these methods however difficult in opaque materials (a local
comparison of two or several closely spaced parallel sections of known mutual dis-
tance is required — see [12, 13]) must be strongly recommended only if an accurate
estimate of grain intensity A is of primary importance.

Otherwise, less demanding approximate methods using particular properties of
spatial tessellations can successfully meet less severe demands. They are based on
a comparison of examined planar sections with 2D tessellations induced by various
models of random spatial tessellations.

2. Models of random tessellations

A usual way of construction uses an idea of cell growth from germs generated
by a random birth process. Let a(t)dvdt be the probability that a nucleus is born
in the volume dv in the time interval (¢,¢ + dt), where a(t) is the intensity of the
point process in the four-dimensional half-space RY = R® x R;. Whenever a germ
is born its isotropic growth starts with a constant rate v under the condition that
germs born within already growing cell are rejected and the growth is stopped in
the points where two cells meet. Such a general tessellation is called the inhomoge-
neous Johnson-Mehl tessellation (JMT), the usual choice is a(t) = at™?,3 > —1.
Grain faces are pieces of hyperboloids of revolution, hence the cells are non-convex,
nevertheless at least star-shaped with respect to the nucleus (any point of the cell
is “visible” from its nucleus). Horélek [8] has shown that the ASTM grain size scale
[14] can be satisfactorily approximated by the inhomogeneous JMT with g = 1. If
a(t) = a, the birth process is a Poisson point process on the positive time axis and
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the tessellation is (homogeneous) JMT. Finally, a(t) = §(0) (all nuclei are born
at the time ¢ = 0) gives the well known Voronoi tessellation. Its cells are convex
polyhedra and any cell interior is the union of all points of the space lying closer
to a germ &; than to any other germ &;,j # i.

Focusing the attention to the Voronoi tessellation, a collection of versatile
models can be obtained by changing the pattern of germs. Orthorhombic point
lattices produce uniform (all cells are translationally equivalent) orthorhombic tes-
sellations covering a range of cell shapes from rectangular rods through cubes to
plates. When the lattice points &; are independently shifted by 7; following some
centred 3-variate distribution (usually the coordinates of random shift vector have
normal N (0,02) distribution), the resulting point pattern is called the Bookstein
model on the given lattice (mostly cubic) and the tessellation generated by the
pattern is the Bookstein model tessellation (BMT).

The Poisson point process (PPP) generates the Poisson-Voronoi tessellation
(PVT). Its properties are well known either from theory or by means of large scale
computer simulations [1, 15]. PVT plays the key role in the theory of random tes-
sellations as well as in their statistics, namely, it is always used as a null hypothesis
in statistical tests concerning tessellations [5, 11]. The Bookstein model on the
cubic lattice with variance 02 — oo tends to PPP and the corresponding BMT
approaches PVT.

Clustered point patterns are commonly produced by implanting a point cluster
Z into the points (called the parents) of PPP. Z is a finite bounded random set
characterized by its cardinality N (the number of points forming Z), by its size
(e.g. the diameter D of the ball into which any realization of Z can be included;
D = sup(diam 7)), and by the arrangement of points (called the daughters). Instead
of D, the dimensionless quantity ¢ = D/p, is usually used, where p, is the mean
nearest neighbour distance of parents (p, = 0.554/ Al/3 for PPP of intensity A in
3D space). In Matérn clusters, the daughters are arranged uniformly at random
within the embedding ball and N has the Poisson distribution with the mean EN.
If ¢ —» o0, the cluster field with Matérn clusters approaches PPP of intensity
A=ENJX,.

The intensity A of a tessellation is a scale parameter only, and, consequently,
the knowledge of the properties of a unit tessellation (A = 1/Ev = 1) is sufficient.
The important characteristics of selected 3D unit tessellations (variance of cell
volume var v and the average mean width Eb) and of the corresponding 2D sectional
unit tessellations (variance of cell profile area var v') are given in Table 1 (the arrows
indicate the above mentioned limit behaviour of BMT and CFT). A table including
other properties is in [10].

It can be seen by inspection of Table 1 that there is some correlation be-
tween var v and var v’ and that Eb decreases with the increasing dispersion of cell
volumes and profile areas (even when there is some difference between the values
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Table 1. Selected characteristics of unit 3D tessellations (cubic (CUB)), Poisson-Voronoi
(PVT), Matérn cluster field (CFT), Bookstein model on cubic lattice (BMT), homoge-
neous Johnson-Mehl (JMT), ASTM model (3D-ASTM), and of their planar sections (in

the length units of A’ ~*/?1)

M CUB | BMTY | PVT CFTY JMT | 3D-ASTM
3D | varv 0 — = | 01790 | « 293 | 1.136§ 2.047§

Eb 1.5 ~ — | 14580 | «1112| 1.238 1.146%
2D | vard’ 04?7 | 04 — | 0.482 120 | >0.83 1.08§

1 Calculated by Horalek [8] on assumption that ASTM is the inhomogeneous JMT with
B=1; 3=0.9 gives Eb = 1.153, the ASTM value is 1.155;
§ Calculated by Mgller [16] for 8 = 0 and 1;

q Ponizil by simulation (> 10° cells for each choice of parameters); CFT for ¢ > 0.005,
EN <30, BMT for 0.005 < o < 20.

corresponding to convex and non-convex tessellations). This observation forms a
basis of the following empirical approach.

3. Approximate estimation of Ev and of varv

In the paper [10], various methods of estimating properties of polycrystalline
grain structure have been reviewed in detail. Here the attention will be focused on
a rather moderate goal, namely

i. to estimate approximately the grain size as characterized by the mean grain
volume Ev or, equivalently, the grain intensity A = 1/Ev i.e. by the mean number
of grains per unit volume,

i1. to characterize the spatial distribution of grains by comparing the observed
2D and 1D grain sections of a real polycrystalline material with tessellations in-
duced in a plane and on a line by various models of random spatial tessellations —
suitable quantities are the variances and coefficients of variations of grain volumes
and of grain sections areas and lengths.

An approximate estimate [Ev] is based on the generally valid equation [9, 10]

Eb )3/27 O

— ' n3/2 fl
Ev=C' (Ev')**, C (——_(Ev)l/?’

where C' is a dimensionless global shape factor the values of which valid for various

regular and random tessellations are presented and discussed in [10]. A tentative
value C' = 1.5 is proposed there as a first approximation. Hence the relation

[Ev]y = 1.5[Ev']*/2. (2)
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solves 4. with an accuracy +30%, say.
Another estimate based on the linear intercept method follows from an analog
of Eq. (1)

3
[Ev],,n — CII[E,UM]:%’ Cu - ((TES%) , (3)
where Ev” is the mean chord length (or the reciprocal chord intensity \”) and s
is the surface area of grain (the assumption of grain convexity is important here).
The value C" ~ 2.5 is proposed in [10]. The accuracy is lower and the bounds of
the numerical constant C" are broader. It must be stressed that estimators (3) and
to certain degree also (2) can give quite erroneous results if non-convex shapes and
rugged boundaries make impossible a reliable decision which profiles compose the
section of one grain.
The second aim is slightly more difficult. Cwajna et al. [9] proposed an empir-
ical equation

[CV(W)]ev () = K1 + K2 In[CV(')]. (4)

Its advantage is that the coefficient of variation CV(v') = vvarv'/Ev' is a di-
mensionless quantity and can be simply estimated directly from images of planar
sections (even without knowing the actual magnification etc.). A broader range of
tessellations examined in [10] lead to slightly improved values K; = 1.16, Ky = 2.22
(note that Eq. (4) seriously overestimates CV(v) for BMT with small values of o;
it gives CV(v) ~ 0.14 instead of 0 at 0 — 0 — compare Fig. 1b in [10]). Combining
now the both estimates (2) an (4) we obtain

[varv]y = ([Ev]y x [CV(U)]CV(v'))z- (5)

4. Examples

A) In order to prove the accuracy of the above-described approximate meth-
ods, several random tessellations have been simulated and examined together with
their planar sections. The spatial intensity of generating points and, hence, also
of the cells was A = 1/Ev = 1 in all cases. Approximately 1000 cells in the
sampled cube and 100 profiles per section remained for analysis after the spa-
tial and sectional edge effects have been carefully removed, which is the number
routinely encountered in metallographic analysis. Three types of spatial tessella-
tions have been selected, namely PVT, two CFT’s with clusters of Matérn type
(EN = 5,20, ¢ = 0.005,0.1,1.0) and finally, three BMT’s with o = 0.005,0.1, 1.0.
Examples of analysed planar sections are shown in Fig. 1, the numerical results
of estimation are summarized in Tables 2 and 3. LSS are either the theoretical
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Table 2. Estimates of Ev, CV(v), varv, and A" in PVT and BMT

o Ev | CV(v) |varv | X' o Ev | CV(v) | varv A

LSS |1 0.423 0.179 | 1.455 1 0.006 | 0.00004 | 1.494
PVT | Real. | 0.983 | 0.412 0.170 0.005 | 0.993 | 0.006 | 0.00004

Est. | 0.836 | 0.319 0.081 0.834 | 0.077 | 0.128

CE 0.099 | 0.148 0.054 0.135 | 0.415 | 0.248

LSS |1 0.101 0.010 | 1.432 il 0.402 | 0.1618 | 1.458
0.1 Real. | 0.998 | 0.102 0.010 1.0 1.02 | 0.411 | 0.169

Est. |0.951 |- (<0)| - 0.837 | 0.241 | 0.057

CE 0.143 — — 0.096 | 0.187 | 0.060

Table 3. Estimates of Ev, CV(v), varv, and X" in CFT’s

¢ EN| Ev |CV(v) |varv | X’ EN | Ev |CV(v) | varv | X’

LSS 1 0.994 | 0.988 | 1.484 1 1.48 2.19 | 1.309
0.005 | Real. 5 10997 | 0.834 | 0.7 20 | 0.98 | 1.43 2.06

Est. 0.789 | 0.94 0.563 1.16 | 1.39 2.68

CE 0.181 | 0.138 | 0.273 0.3 |0.10 1.19

LSS 1 0.975 | 0.952 | 1.479 1. 1.47 2.15 | 1.317
0.1 Real. 5 1.02 | 0.84 0.709 20 | 1.06 | 1.51 2.29

Est. 0.802 | 0.98 0.64 1.30 | 1.30 2.98

CE 0.108 | 0.131 | 0.224 0.34 | 0.19 1.56

LSS 1 0.857 | 0.735 | 1.456 1 1.27 1.61 | 1.369
1.0 Real. 5 1.05 | 0.808 | 0.656 20 | 0.97 | 1.19 1.43

Est. 0.858 | 0.831 | 0.545 0.93 | 1.35 1.59

CE 0.133 | 0.080 | 0.255 0.13 | 0.12 0.44

values (PVT) or the values obtained by large scale simulations; in these rows also
the intensity A\ is given. Note that it changes whereas the mean grain volume
is constant! Real. are the sample means from 10 cubes each of which contained
approximately 1000 cells. Est. are the mean values of estimates from 10 planar
sections (one per each cube) and CE are the coefficients of error of these means
(the standard deviation of the sample mean divided by sample mean).

B) Planar sections of commercial construction steel CSN 11 301.0 (0.1% C,
0.4% Mn) specimens have been polished and etched in 1% Nital solution to reveal
the grain structure (Fig. 2). The profile areas (two sections, 1850 profiles) have
been estimated by means of an automatic image analyser under final magnification
246 and then a numerical correction on the non-zero thickness of grain boundary
traces was applied. Moreover, the intensity " = 1/Ev"” was estimated by manual
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(a) (b)

(d)

Fig. 1. Examples of examined planar sections: (a) BMT (¢ = 0.1), (b) PVT, (¢) CFT
(¢ = 0.005, EN = 5), (d) CFT (c = 1.0, EN = 20).

analysis. The results are as follows: [Ev'] = 1115 um?, [Ev"'] = 31.81 um, CV(v') =
= 0.919. Then from Eq. (2) is [Ev],y = 55850 um?, whereas Eq. (3) gives [Ev],» =
80480 pm?. Finally, [CV(v)]cv vy = 0.972 by Eq. (3) and a comparison with Tables
1-3 leads to the conclusion that the analysed grain structure reveals a distinct
features of a cluster field tessellation.

5. Discussion

ad A) The chosen models cover a rather broad class of situations. BMT’s
with o = 0.005 and 0.1 are tessellations induced by quasi-uniform hard-core point
patterns, which are close to the cubic tessellation. The uniformity of cells and of
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Fig. 2. A part of examined planar sections of the real material (magnification 132x).

their arrangement is already lost at o = 1.0 and var v approaches the PVT value.

The two cluster fields differ considerably. At EN = 5 and small ¢, the parent
cells are divided more or less regularly into pyramid-like outer cells generated by the
daughters having at least one nearest neighbour belonging to another cluster. At
EN = 20, many so-called inner cells also occur; they are associated with daughters
completely encircled by points of the same cluster. Inner cells are much smaller
than the outer ones and, thus, the whole cell populations is a mixture of cells of
two kinds differing in size and shape. With growing c this difference slowly vanishes.

a) Estimates of Ev: The more accurate value of C' for PVT, BMT a CFT with
EN =5 lies between 1.7 and 1.8 (see [10]), hence a negative bias of the estimate is
observed. Similarly for CFT with EN = 20is C' as low as 1.2, hence a positive bias
of the same order is observed. Even when CE is rather high for small clusters with
high EN (the samples are too small for a population with such a high dispersion
of sizes), the accuracy of the estimator [Ev] lies within the expected range +£30%.

b) Estimates of CV(v) and of var v: A negative bias typically below 0.1 prevails
in CFT’s. Taking into account small sizes of the planar samples, this result is
surprisingly good. A high positive bias in BMT’s with ¢ = 0.005 and a negative
value at 0 = 0.1 demonstrate limited validity and instability of estimates based
on Eq. (3) in such cases. Slightly surprising is the high negative bias of CV(v) in
the case of PVT. Nevertheless, the order of increasing CV(v) from BMT to PVT,
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CFT with EN = 5 up to CFT with EN = 20 is correctly reflected by the obtained
estimates.

The biases in the both previous estimates combine and the result is moreover
squared in [var v],/; nevertheless, at least the estimates in CF'T’s are still acceptable.

ad B) In the examined real material, the difference between the mean grain
volume estimates [Ev],/, [Ev],» can be diminished by the application of more ac-
curate values of C’,C". Namely, the value of CV(v) reveals that the dispersion of
grain sizes is comparable with the examined CFT (N = 5) for which C' ~ 1.75
(see above A.a)). From a similar reason (see [10]), the value of C" =~ 2.3 is
perhaps more appropriate. The improved estimates are [Ev],y = 65158 um® and
[Ev]y» = 74041 um?®. [Ev], is in any case more reliable. First, a planar section is
a more representative image of 3D structure than a line section and, moreover, in
view of rather thick boundaries, some small secants can remain unobserved in the
neighbourhood of three profile junctions. Inserting for C' in Eq. (1), an estimate
of [Ebly = [N]w/[N?*/® = 1.45 (in the length units of A~'/3, hence comparable
with the values in Table 1) for the real material (only slightly lower than the PVT
value) is an acceptable value for a tessellation with mild clustering (N = 5, say),
whereas from [A],~» an unreasonably high value of [Eb],» = 1.58 follows.

6. Conclusions

The analysis of small size samples of simulated tessellations confirmed a good
reliability of the proposed mean grain volume estimates. The proposed common
value of C' = 1.5 ensured the accuracy within the expected £30% layer even in
considerably different cases covering a range of situation from nearly uniform to
highly non-uniform cell populations. The observed bias of the estimate can be
further decreased by a selective choice of C’ according to the estimated value
of the coefficient of variance of profile areas. Moreover, the estimated value of
CV(v) correctly reflects the tendency to clustering or to uniformity in the examined
tessellations.

The examination of a real tessellation has shown an appreciable difference
between the mean grain volume estimates based on the mean profile area and on
the mean intercept length. The estimate of CV(v) made possible a selective choice of
factors C', C", which narrowed the difference between these estimates considerably.
The mutual comparison of estimates of Eb then confirmed the estimate based
on the mean profile area as a more reliable. Thus, the usefulness of the variance
estimation has been proved in the both analysed cases. In fact, the approximate
estimation based on the use of Egs. (2) and (3) with fixed values of C,C"” would be
no substantial improvement in comparison with the conventional characterization
of grain size by the values of A, A" (N4, Ny, in another notation) only.

It must be stressed that simulations of tessellations serving as models of real
polycrystalline grain structures become very important also with respect to spe-
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cial fracture analyses like intergranular crack growth modelling and assessment of
associated shielding effects at the crack front [17].
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