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DISLOCATION MODEL FOR FATIGUE CRACK
PROPAGATION OF LONG CRACKS

REINHARD PIPPAN, FRANZ O. RIEMELMOSER

The differences between the description of cyclic plasticity with a discrete dislocation
model and the classical elasto-plastic continuum theory are studied. It is shown that both
the dislocation model and the continuum mechanics lead to the same results at high
stress intensity ranges (Paris regime) but they differ significantly for small stress intensity
ranges. The conclusion of these results is that the characteristics of the near-threshold
fatigue-crack-growth behavior is only explainable with a discrete dislocation model.

1. Introduction

It is widely accepted that the central mechanism leading to fatigue crack prop-
agation is the cyclic plastic deformation at the crack tip. For large stress intensity
factors, i.e. in the mean and upper Paris regime, the plastic deformations are large
and the crack tip plasticity can be described by classical elasto-plastic continuum
theories. At small stress intensity ranges, in the near threshold regime, the situa-
tion is different. Here the plastic zone is confined to a very small region in front of
the crack and the cyclic plastic deformations are only of the order of a few Burgers
vectors. We will show that here the classical elasto-plastic continuum mechanics is
not appropriate to describe the plasticity at the crack tip. In the near threshold
regime the plasticity is strongly influenced by its discrete (dislocation) nature.

Detailed investigations of the interaction of single dislocations with a crack tip
have been performed already in the mid-eighties where the attention was at first
focused to the ductile-to-brittle transition of metals [1-16]. In the early nineties
the dislocation-crack investigations have been extended to cyclically loaded cracks
[17-30].

In the first step the threshold conditions of the cyclic plastic deformation in
front of a mode II and a mode III crack were studied in dependence on the chosen
stress intensity factor necessary to generate a dislocation and on the friction stress.
Also, the influence of dislocation obstacles was taken into consideration [24, 25]. A
stationary (non propagating) mode I crack was investigated in [26, 28, 30]. There
we compared the results of the discrete dislocation model with the predictions of
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a continuum mechanics analysis. In [28, 30] the dislocation model was extended to
describe a growing fatigue crack where dislocations accumulate in the wake.

The purpose of the present paper is to summarize the fundamental assumptions
in such dislocation based models and to give an overview of the most important
results.

2. Fundamentals

In our simulations the crack tip plasticity is described by generation and mo-
tion of geometrically necessary dislocations [28]. A schematic dislocation arrange-
ment for the three loading modes is depicted in Fig. 1. A mode I loading causes the
motion of edge dislocations in symmetric and inclined slip planes. At mode II and
mode IIT cracks edge respectively screw dislocations are arranged directly ahead of
the crack tip.
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Fig. 1. Dislocation arrangement at a mode Fig. 2. Schematic illustration of the zones
I (a) mode II (b) and mode III (c) crack. which are dominated by the local stress in-
tensity factor & and the applied or global
stress intensity factor K if dislocations are

present in front of the crack.
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a) The local and the global stress field

At a linear elastic crack there exists a zone at the crack tip where the stress
intensity factor is a unique measure of the stress field. If now the crack is loaded
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and dislocations enter this region the stresses are changed. It can be shown [8] that
this new stress field is characterized now by two stress intensity factors, as sketched
in Fig. 2. At distances much larger than the plastic zone size the stresses are given
by a global stress intensity factor, K. Very near the crack tip, at distances smaller
than the distance between crack tip and the closest dislocation, the stress field is
determined by a local stress intensity factor, k. The relation between both stress
intensity factors is given by

k=K+) ka,

where kq4 is the stress intensity factor induced by a single dislocation [8]. The
summation in the equation above is performed over all dislocations in the plastic
zone. Note that we use capital letters to designate global or applied parameters, to
label local ones we use small letters. The difference between K and k, i.e. the sum
over kq, is called shielding stress intensity k; of the dislocations [3, 29].

The stresses in the transient region between the two stress intensity dominated
fields are determined by the dislocation arrangement and the applied stress inten-
sity factor. The size of the transient zone is of the order of the plastic zone size.
A crack is called long if this transient region is small in comparison to the crack
length. In this case the stress intensity factor K, the stress intensity range AK, the
stress ratio R, the friction stress (or yield stress), and the dislocation generation
mechanism determine what happens during monotonic and cyclic loading.

b) Dislocation source

We confine our considerations to small stress intensity factors. As a conse-
quence, the plasticity is bounded to the immediate vicinity of the crack tip. In
this small region internal dislocation sources (e.g., Frank-Read sources) are not
available. We assume that the dislocations are generated at the crack tip. This
source mechanism was discussed by Rice and Thomson [8] and further elaborated
by Schock [12] and Rice [32]. Their analyses show that spontaneous dislocation
emission at the crack tip occurs when the local stress intensity factor reaches a
critical value k.. In [27] a different dislocation generation mechanism was assumed.
There the dislocations are generated somewhat ahead of the crack tip at a conven-
tional dislocation source. A comparison of the results in [27] with our simulations
shows that the principal conclusions are the same in both models. In the case of
internal dislocation sources only additional parameters like the position and the
critical stress of the dislocation mills have to be taken into account.

c¢) Dislocation reaction and moving conditions

A single dislocation in an unbounded linear elastic medium does not feel the
force from itself. If additional stress sources are applied a Peach-Kochler force acts
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on the dislocation
df =(o-b) xdl,

where b is the Burgers vector, o is the stress tensor and df is the force on the line
segment dl. In our simulations the additional stress sources are the following:

— the stresses caused by the applied stress intensity factor,

— the stresses caused by the free surface (the crack), which is called the image
stress,

— the stresses caused by the other dislocations.

In the model the dislocations are not allowed to change their glide plane such
that their motion is controlled by the slip force. A dislocation is at rest whenever the
slip force is less than the friction stress (or a certain critical stress if it is located at
an obstacle) otherwise the dislocation moves into the direction of the slip force. Two
dislocations with opposite Burgers vectors annihilate when their mutual distance
shrinks to a certain limit. Dislocations returning to the crack disappear at the free
surface.

3. A typical load cycle

In order to demonstrate what happens during a fatigue cycle, the change of the
local and the applied stress intensity, as well as the crack-tip opening displacement
are shown in Fig. 3a,b for mode III. In this example we assume a critical stress
intensity for emission of a screw dislocation being k. = 0.15+/b and a friction stress
or = 0.001p which are typical for metals. Since the assumed moving conditions
for dislocations are independent of the loading rate, we can use arbitrary units for
the time scale.

In our computer simulation the applied stress intensity is increased (and de-
creased in the case of unloading) in steps. After each step, the conditions for dislo-
cation emission are controlled and the equilibrium position for every dislocation is
calculated. At the beginning of the loading there are no dislocations in front of the
crack. Hence, for K values smaller than k. the local and applied stress intensity
are equal. As soon as the applied stress intensity factor reaches the critical stress
intensity k., the first dislocation is emitted and glides away from the crack tip.
It reaches its equilibrium position where the shear stress acting at the position of
the dislocation is smaller than the friction stress. The emission of the dislocation
causes an “opening” (shearing) of the crack tip of 1 Burgers vector. This is one of
the essential differences between the discrete dislocation model and the classical
continuum mechanics. In the dislocation model there is a minimum load necessary
to produce plastic flow whereas continuum mechanics predicts even at such small
stress intensity ranges a non vanishing plastic deformation.

The generated dislocation in front of the tip reduces the local stress intensity
factor. The further increase of the applied stress intensity factor causes a motion of
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Fig. 3. Change of the applied and local stress intensity of a mode III crack during cyclic
loading at the stress ratio R = —1, for k. = 0.15u+/b and g7 = 0.001p (a) and the change
of the corresponding crack tip opening displacement (b).

the first dislocation away from the crack tip. The local stress intensity increases to
k. and the second dislocation is emitted. This leads to a further plastic “opening”
at the crack tip.
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Fig. 4. Dislocation distribution in the slip plane ahead of a mode III crack at Kmax =
0.25uv/b, op = 0.001p, ke = 0.15uV/b.

These processes continue till one reaches K ax. The arrangement of the dislo-
cations at K.y is depicted in Fig. 4. It looks like an inverse pile-up of dislocations,
with a dislocation free zone near the crack tip. This is a characteristic result of
the assumed dislocation source (but also for Frank-Read sources the arrangement
is very similar [28]). The dislocation free zone is the second significant difference
between dislocation model and the continuum mechanics. The latter predicts a
1/radius singularity in the plastic strains at the crack tip.

Let us now consider what happens during unloading. At Kp,ax the stress acting
on each dislocation (in Fig. 4) is equal to the friction stress. During unloading these
stresses are reduced. However, the dislocation can move towards the crack tip
only when the shear stress at their positions is smaller than the negative friction
stress. For that reason the dislocation arrangement is not changed in the very
first unloading phase. Here the system behaves purely elastically. This means the
crack tip opening displacement is not changed. After a certain unloading the stress
acting on the last emitted dislocation becomes smaller than the negative friction
stress and this dislocation moves towards the crack tip. As a consequence the local
stress intensity factor decreases faster than the global one. The effect however is
so small that it cannot be seen in Fig. 3a. Therefore, the stress intensity factor
where the closest dislocation starts moving towards the crack tip is marked by an
arrow. When the closest dislocation reaches a certain distance to the crack tip,
it returns spontaneously to the free surface and disappears. The plastic crack tip
opening displacement is reduced by one Burgers vector. Caused by the return of the
dislocation, the total dislocation shielding decreases and the local stress intensity
factor increases. During further unloading more and more dislocations move back
to the crack until the criterion to emit a dislocation with an opposite sign of the
Burgers vector is satisfied. This happens when the local stress intensity factor
decreases to k = —ke.

The first emitted “negative” (unloading) dislocation recombines with the “pos-
itive” (loading) dislocation. The emission of a negative dislocation and the anni-
hilation of a pair of dislocations is seen in the local k£ vs. time curve as a small
step. The generation of negative dislocations and the annihilation of dislocation
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pairs continues until the positive dislocations are exhausted. From now on, the dis-
location arrangement and the change of the local stress intensity is the same as in
the loading sequence where only the loading direction and the sign of the Burgers
vector is changed. Since the maximum stress intensity in the unloading sequence
is assumed to be —Kpax the dislocation arrangement at the negative maximum
load is identical to that of the positive maximum load. (This is true for the sim-
ulations of mode II and mode III cracks. In case of a mode I crack the symmetry
between loading and unloading cycle is lost due to the crack-flank contact during
unloading.) In the following loading phase, the same processes as just described are
repeated with a changed sign of the Burgers vector.

4. The cyclic crack tip opening displacement as a function of the stress
intensity range

Fig. 5 shows the ACTOD as a function of the far field stress intensity range
(solid curve) for a stationary mode I crack. The crack is not allowed to propagate
during the cyclic loading, and there are no dislocations in its wake. The following
parameters are assumed for this calculation [26]: symmetric dislocation arrange-
ment as depicted Fig. la, angle of dislocation emission a = 70.53°, shear modulus
p = 80,000 MPa, k. = 0.4p - Vb, o = /200, R =0.
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Fig. 5. Cyclic crack tip opening displacement, ACTOD, in units of Burgers vectors as a
function of AK/ke, R = 0, for mode I loading.

The dotted line in Fig. 5 is the continuum mechanics prediction of the ACTOD
based on Rice’s slip line model [31]. A comparison between both curves shows
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that for large AK values both Rice’s slip line model and the discrete dislocation
model lead to the same result. For small AK values large differences appear. The
differences are primarily due to the absence of plasticity in the discrete dislocation
model at the very beginning of the loading and the unloading cycle. In continuum
mechanics even the smallest change in the loading conditions leads to a plastic flow.
Let us assume that ACTOD is proportional to da/dN. In this case Fig. 5
can be interpreted as an intrinsic crack growth curve (note that it is plotted in a
log ACTOD vs. log AK diagram). The continuum mechanics predicts a linear rela-
tion between log “crack growth rate” and log AK whereas the discrete dislocation
model shows the real observed threshold behaviour. '
Fig. 6 shows again a calculated ACTOD vs. AK diagram based on the dis-
crete dislocation model for a mode III crack as depicted in Fig. 1c. The parame-
ters assumed in the computer simula-
10° tion are R = 0.1, k. = 0.2u\/5 and
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Fig. 6. Influence of the friction stress on

the cyclic crack tip opening displacement

in units of Burgers vectors as a function of

AK, R = 0.1, mode III crack, k. = 0.2uv/b,

or = 0.0005x (black circles) and 0.002u
(white circles).

the friction stress 0.00054 (open circles)
and 0.002y (full circles). The compar-
ison of the mode I and the mode III
simulations leads to the following con-
clusions:

— The loading mode does not in-
fluence the general behaviour of the
ACTOD versus AK curve.

— In the Paris regime the ACTOD
values are proportional to 1/or which
is in agreement with the prediction of
the elasto-plastic continuum mechan-
ics.

— In the near threshold regime the
influence of the friction stress on the
ACTOD vs. AK curve vanishes. The
dislocation generation mechanism is the

dominant process in this case. This means that the onset of the cyclic plasticity,
and hence, the intrinsic threshold for fatigue crack propagation is determined by
the dislocation generation mechanism.

5. The propagating crack

In principle, different propagation mechanisms can be assumed in the computer
simulation for fatigue crack propagation. In our simulation [28] of a mode I crack,
we use a blunting model which is similar to Pelloux’ crack growth model [33] and
to the stereophotogrammetric observations of Bichler [34]. In the loading sequence
the crack emits dislocations whereby the crack blunts and grows. The crack growth
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increment per emission of one dislocation is Aa = |b| - cos a, where a is the angle
between the growing direction and the slip plane.

Fig. 7 shows the calculated dislocation arrangement of a propagating crack.
The material parameters are the same as those used for the simulation of the
stationary fatigue crack. The details of
the calculations and results are given
in [30]. The most important difference
between the continuum mechanics de-
scription and the discrete dislocation
modelling is the inhomogeneity of the
deformation which can be seen clearly
in Fig. 7. Under steady state condi-
tions the dislocation in the wake of a
propagating crack arrange in slip bands
which are separated by dislocation free
regions. The distance between the slip
bands cannot become arbitrarily small.
The reason is the long range elastic
interaction force between the disloca-
tions. A very important consequence of
this effect is that each slip band leaves

’ ) Fig. 7. Arrangement of edge dislocations
a slip step on the fracture surface which  jj the wake of a growing mode I (tearing)

to our belief is the reason for the so  crack, Kmax = 4ke, the parameters for the
called abnormal striation spacing in the calculation are the same as in Fig. 5.
near threshold regime.

6. Conclusion

In this paper the principles of modelling the dislocation motion during fatigue
crack propagation are discussed. We consider mode I, mode II, and mode III cracks.
In the last case the generated dislocations are screw dislocations, in the former cases
edge dislocations are produced during the cyclic loading. The comparison of these
simulations revealed that the CTOD-AK curves are similar in the three loading
modes. In particular, the ACTOD at large stress intensity ranges is proportional
to the lattice friction stress and at small stress intensity ranges the ACTOD-AK
curves bend down leading to a threshold of the plastic deformation at a ACTOD
of 1 Burgers vector per cycle. This explains the intrinsic threshold behaviour of
fatigue cracks and it shows the necessity to model here the plastic deformation as
motion of discrete dislocations.
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