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PROPAGATION OF PLASTIC INSTABILITIES

JAROSLAV BALIK, PAVEL LUKAC

The microscopic cause of the unstable deformation regime known as Portevin-LeCha-
telier effect is the pronounced dynamic strain ageing when diffusing solute atoms modify
the glide resistance in a specific manner. We attempt to describe the propagation of
corresponding macroscopic deformation bands on the basis of a relaxation model that
distinguishes between quasistationary and immediate flow resistances and incorporates
non-local contributions to the flow stress.

1. Introduction

Plastic instabilities may occur for various reasons. We will focus on strain-rate
softening instabilities that result from interaction of glide dislocations with diffusing
solute atoms. In such regime of dynamic strain ageing (DSA) the locally variant
solute distribution is formed, most probably by pipe diffusion, in the internal stress
field or as a result of solute drag by moving dislocations [1]. The DSA-effects are
observed for a lot of alloys deformed at suitable (medium) temperatures and strain
rates.

If, as a consequence of DSA, the strain rate sensitivity of the flow stress be-
comes negative, significant spatial and temporal plastic instabilities and load ser-
rations known as Portevin-LeChételier effect (PLC) may arise. Their main char-
acteristic is propagation of continuous and hopping plastic waves or bursts. The
aim of this work is to discuss the conditions of propagation of PLC-instabilities.

2. Quasistationary description of DSA

The glide resistance to movement of dislocations is produced by two sets of
obstacles: strong forest dislocations and weak solute atoms. The dislocation com-
ponent o4 is given by
F F\/_

1
bL( ) (1)

where F' is the mean pinning force between the forest and waiting dislocations, L is
the mean distance between obstacles along the waiting dislocation, p is the density
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of forest dislocations, b is the Burgers vector. The friction component o, due to

the mobile-dislocation-solute interaction, is expressed in single obstacle description
by

where f and [ have an analogical meaning as above but for solutes in the role of
obstacles. c¢ is the solute concentration.
The strain rate over only forest dislocations would be

e mbD) o, -2 “
w

where A is the mean free path of dislocations, t,, is the mean waiting time for a
successful activation, p,, is the density of mobile dislocations, Q = bp,,A is the
elementary strain, vy is the attack frequency, AG is the activation free enthalpy, k
is the Boltzmann constant, T is absolute temperature. A relation analogous to (3)
should be valid for plastic flow in the field of solutes

€= w(pm,c)yoe_%ﬁ. (4)

Two qualitative differences between dislocation and friction kinetic equations (3)
and (4) should be noted: 1. while the pre-exponential factor (elementary strain)
for the flow rate across the dislocation forest depends only on the complete dis-
location structure, that for the friction controlled rate varies with the (local line)
concentration near the moving dislocation; 2. whereas the activation free enthalpy
for the solute-dislocation interaction is a single obstacle characteristic, that for
dislocation-dislocation interaction may be influenced by the presence of solutes
(near the junction point).

The pairs of equations (1), (3) and (2), (4) yield the constitutive expressions
04(¢,T, p, pm,c) and 0¢(€,T, pm, c) for the dislocation and friction glide resistances,
respectively.

In the case of DSA, the concentration in relations (2-4) is no longer the nom-
inal one, but it is the local concentration in the mechanically relevant sites. The
concentration dependencies of dislocation and friction parts of glide resistance were
treated in the previous paper [2]. One can write

€ 5 Ac
04+ 05 =09 {len (V_o) s Ps co} + fo {len (V_o) ,p} Acry’ (5)

where Ac = ¢ — ¢g is the local concentration increment due to DSA, ¢y is the
nominal concentration, Acys is the maximum (buffer) concentration increment,
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oo 1s the flow resistance without DSA. The structure variations of InQ,Inw are
omitted in (5) for simplicity. The diffusion kinetics is usually ezpressed by

Ac=c—c¢g =AcM[1—exp{—(ta/to)p}], 6)

where t, is the diffusion ageing time. The exponent p is typically 1/3 or 2/3 [3,
4]. The diffusion relaxation time t;, depends on the binding energy between a
dislocation and solute atom, on solute concentration, and is inversely proportional
to the diffusion coefficient of solutes [5].

A lot of mechanical effects due to DSA, including the critical conditions for
the occurrence of PLC, has been at least qualitatively explained under identifying
of ageing and waiting times:

to =ty = —. (7)

Thus, Ac increases with decreasing strain rate. The strain rate sensitivity of the
flow resistance (5) decreases with respect to the always positive sensitivity of a non-
aged stress 0p. However, the deformation regime with well developed PLC-bands
cannot be explained in the frame of the above quasistationary treatment of DSA,
unless certain ad hoc assumptions are made. In the next, we suggest a consistent
model that yields satisfactory results also for the regime of instability propagation.

3. A concept of the PLC-instability propagation

The flow stress and strain rate are determined by such microscopic quantities
as pinning force, length of pinned dislocation segments, elementary strain, and
waiting time. Because these quantities concern a great number of pinning points,
they obviously have a statistical character, see e.g. [6]. Variation of one of the
external variables o,¢ transfers to the variation of the second variable through
time dependent distribution functions of the fundamental microscopic quantities
[7]. The use of the effective values of these quantities (instead of suitable averaging
procedures) in the right sides of relations (1-4) may be rightful only if certain
quasistationarity and area homogeneity of dislocation displacement are reached.
In the following we refer to such a plastic regime as quieted.

In the absence of DSA the quieted flow is reached so quickly that it is possible,
practically always, to use the formulation (1-4). This means, among others, that
sudden changes in strain rate are followed by sudden flow stress changes.

In the case of DSA, an additional diffusion mechanism modifies the distri-
bution of microscopic quantities: the strength of pinning points as well as solute
concentration along the waiting segment pairs depend on the actual waiting times
at those points. This leads to a total change of the microscopic character of slip
and to a new response between external variables o, . The quieting of plastic flow
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from a general initial state (as prepared, e.g. by a strain rate jump) requires that
all segment pairs (also with the longest waiting time) overcome the initial obstacles
and that ageing at new obstacles starts in fully quieted field of solutes. The time
necessary for the establishment of the quieted state may be rather long, as it is
demonstrated by the flow stress transients after strain rate jumps in tensile tests
8]

We believe that models of DSA operating with effective relations (6) and (7),
e.g. [9], apply to quieted plastic regimes only. However, this is not the case of
PLC. Hence, in agreement with (6) and (7), we assume the quieted plastic state in
DSA regime is uniquely parametrized by &, i. e. it would be reached in a material
element if a constant rate € could be held there for a sufficiently long time.

For non-quasistationary regimes we assume that the applied stress equals a
certain transient flow resistance that can be divided, similar to (5), into a fast
constitutive part og(¢) with normal kinetics and a non-constitutive part o,:

g = ao(€) + g, (®)

Quieting (at constant £) means that quantity (8) approaches the quieted flow stress
or(€), modelled, e.g. by (5-7). The transient behaviour is given by approaching
of o, to the constitutive quantity op(€) — go(¢). We use the simplest relaxation

kinetics
do,

ot

where the relaxation time ¢; corresponds to the accommodation of the distributions
of fundamental microscopic quantities. Eq. (9) is easily applicable also for non-
constant €. (Note that generalization of the relaxation behaviour is possible, e.g.
by dividing of o, into several components governed by kinetics (9) but with various
relaxation times). Combining (8) and (9) we obtain

t1

+ 0, :UF(é) '-0-0(5:)1 (9)

t6 + 0 = t100 + op(E). (10)

This equation may be considered as a generalization of the constitutive (“quieted”)
relation

o =or(g) (11)

also for transient regimes. Eq. (10) applies for strain rate jumps, as well because
the corresponding stress changes are given by the fast component: Ao = Adgy.
PLC-deformation inhomogeneities (bands) are of the width of 0.1-1 mm. This
is the evidence for non-local interactions which influence the slip resistance in that
range. Many such mechanisms of pure material origin are known [10]. The effect of
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incompatibilities, which arise during deformation of polycrystals [11], was estimated
as the “strongest” among them. The corresponding internal stress —Ce” may be
regarded as a long range component of the local flow resistance

UF,L(za 6) = UF(é) #+ CE”) (12)

1 . . .
where C = Zpdz, 1 is the shear modulus, d is the grain size, primes denote the

differentiation with respect to . Another kind of nonlocalities is due to the bound-
ary conditions for stress and strain rate tensors. The free surface of a specimen
is distorted at nonuniform deformation and one-component description is no more
possible. For small distortions of this kind the following correction may be used

Fior = o} (13)
P

= ey 14

e 5’0(55)e ’ (14)

where o7 is the true stress, P is the load, Sp(z) is the initial cross section (for
e = 0), = is the coordinate along the (deformed) specimen, F} is the Bridgman
factor

Ft =1+ %SO . e_E(E —1In So)”. (15)

For 8 = 1 the formula (15) approximates the traditional one 1/F; = (1 + 2R/y)
In(1 + y/2R) with the local specimen radius y and local curvature radius R of the
axial cut, which has been derived [12] for a cylindrical sample and at the plane
of symmetry of the neck, assuming the uniaxial flow stress o is a quite uniform
quantity. To apply the Bridgman correction to locally variant flow resistances with
strain hardening, strain rate sensitivity, and at the general cross section, as well,
we identify the right side of (13) with the left side of (12). We expect that the
possible deviations may be involved by the factor 3, assuming the gradient terms
are relatively small.

Application of the basic relaxation equation (10) to non-local stress quantities
evokes some questions: Should be the relaxation made for purely constitutive limit
or for the local flow resistance (12), or at the “true level” (i.e. including the Bridg-
man correction), again without or with the incompatibility stresses? Assuming the
non-quieted terms ¢,9/9t and the nonlocal terms with €” are relatively small with
respect to the constitutive quantities, we neglect terms with ¢1£”. Then all the
above mentioned variants give the same result

tior + Fyor — Ce"’ = t169 + oF. (16)
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In frame of the last used approximation, the only constitutive part of ¢ is relevant
in (16), too. The relation (16) represents the equation for propagation of PLC-
-instabilities.

4. Numerical checks of propagation equation

To check numerically Eq. (16), we bear upon the tensile tests of an Al-3Mg
commercial alloy. The samples of gauge length 50 mm and cross section 1.5 x 6 mm
were deformed on INSTRON 1195 machine at room temperature and the crosshead
speed U = 1.67x 1072 mm/s, i.e. at applied rate €, = 3.3x 1073 s~!. The machine
condition reads

lo
Ut+zo=kP + / e(z,t)dz, (17)
0

where k = 1.7 x 10~* mm/N is the compliance of our device. Using (14) and (17)
the true stress and true stress rate are expressed by integrals of strain and strain
rate along the specimen. To express

analytically the quieted flow stress, we 240 T , .
combine our experimental results with
recalculated data reported for Al-5Mg 1 230
and strain of 8% in [13]. Our expres- ‘g’
sion for op(€,€) is not reproduced here, 2 220
but its fit to empirical data can be seen S ’3
in Fig. 1. The high rate branch of qui- £ 510 g |
eted flow stress, if expanded to all strain ¢ s "
rates, serves as immediate (fast) flowre- 3 , .| ° |
sistance: . ,
g i1 J S S Y18 S .
00(€,€) = h(e —ec) + M arcsinh <g~) ; 107% 19-% 1% 107 102
(i8) 67 -
here h = 1013 MPa for . = 0.08. The Fig. 1. Quieted and immediate slip resis-
fitted value M = 6.28 MPa corresponds tances.

practically to the familiarly defined im-
mediate sensitivity dog/dIn€; the arcsinh function was used only to avoid difficul-
ties for € — 0. A typical experimental load signal is shown in Fig. 2.

With (18) and (17) the relation (16) becomes an integro-differential partial
equation of second order in time and coordinate for e(z,t). It appears that inho-
mogeneity propagation is rather sensitive to the factors at € and &” : t; M/\/€2 + &3
and BP/8m — C, respectively. In our case, P/8x is of about 80 N and pu = 26.8
GPa, grain size d = 18 um which result in C = 2.2 N. So, the incompatibility
contribution to the non-local interactions seems to be small with respect to the
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Fig. 2. Load signal in tensile test, Al-3Mg.

Bridgman one. (Note that in these considerations both 3 as well as “coherence
distance” d remain rather uncertain.) In the next, we formally set C' = 0 and
try out the value of 3. As to the coordinate profile of the initial cross section,
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Fig. 3. Calculated instability propagation,
t, =01, 8=1.

we allow an exponential law in order to
reach (In Sp)” = 0. The boundary val-
ues are Sy = 8.9 and 9 mm? at the left
and right ends of the specimen, respec-
tively; this corresponds to the normal
machining.

The examples of calculations are
shown at Figs. 3, 4, 5 for various com-
binations of 3 and t;. The time-
-coordinate diagrams were obtained as
“isohypses” of the &(t, z)-surface at the
level of applied rate. The black and
white areas correspond to strain rates
above and below the applied one, re-
spectively. In spite of great complex-
ity of our propagation equation and of
wide variety of its solutions, we can re-
mark a tendency governed by the ratio
B/t1 (i.e. relative “strength” of non-
-local interactions with respect to relax-
ation time): at greater ratios, the de-
formation spreads in compact smooth
waves, named empirically as type A of
PLC (Fig. 3). Decreasing the ratio,
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Fig. 4. Calculated instability propagation, Fig. 5. Calculated instability propagation,
t1 =0.2, 8 =0.05. t1 =05, 8=0.1.

both propagation rate and coherency decrease, too. Either nucleation of opposite
waves or hopping deformation bands appear, known as B-type of PLC (Fig. 4).
Still lower values of 3/t; can lead to full loss of time-space coherency and to in-
dividual deformation bursts chaotically distributed in space — see the first part in
Fig. 5. This regime is accompanied with pronounced load drops and we suggest to
identify it with the C-type of PLC. The following regime in Fig. 5 is represented by
multiple waves of relatively slow propagation rate and of “fine hopping structure”.
A high sensitivity of the propagation mode to the strain and strain rate profiles,
as they are build up during deformation, is manifested by transitions in Figs. 4, 5.
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