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AB INITIO CALCULATION OF THE IDEAL
TENSILE STRENGTH IN COPPER AND
NICKEL ALUMINIDE

MOJMIR SOB, LIGEN G. WANG, VACLAV VITEK

Fully self-consistent ab initio electronic structure calculation of the theoretical tensile
strength of single-crystalline copper and NiAl loaded uniaxially along several crystallo-
graphic directions is performed using the full-potential LAPW method. In copper, the
calculated theoretical tensile strengths are about an order of magnitude higher than the
measured ones. This is in contrast with a recent similar analysis performed for tung-
sten where a good agreement with experimental data was attained. This indicates that
another instability occurs in the material before the critical tensile stress is reached. In
NiAl, the “hard” orientation [001] differs very significantly from the [111] orientation; this
anisotropy may be understood in terms of higher-symmetry structures present along some
deformation paths.

1. Introduction

Many structural and dynamical properties of solids can be predicted accu-
rately from ab initio (first-principles) electronic structure (ES) calculations, i.e.
from fundamental quantum theory (Schrédinger equation). Here the atomic num-
bers of constituent atoms and, usually, some structural information are employed
as the only input data. Such calculations are routinely performed within the frame-
work of density functional theory in which the complicated many-body interaction
of all electrons is replaced by an equivalent but simpler problem of a single electron
moving in an effective potential. For a given material, the calculated total energies
are used to obtain equilibrium lattice parameters, elastic moduli, relative stabili-
ties of competing crystal structures for a given material, energies associated with
point and planar defects, alloy heat formations, etc. In addition, we also obtain
information about electronic densities of states and charge densities that enables
us to attain a deeper insight and learn which aspects of the problem are important.
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NiAl loaded along the [001] and [111] directions, discuss their anisotropy, and com-
pare our findings with the experimental results obtained for copper whiskers.

2. Computational details

The methodology or calculation of the variation of the total energy during the
tensile test has been described in detail in (1,2, 12]. One starts with the calculation
of the total energy of unloaded material. Then the crystal is elongated along the
loading axis (denoted as axis 3 in the present paper) by a fixed amount 3, which
is equivalent of applying some tensile stress ¢ = 3. To ensure uniaxial loading,
the dimensions of the crystal in the directions perpendicular to the loading axis are
relaxed by finding the minimum of the total energy as a function of these dimensions
(this yields zero tensile stresses o; and o2 along the axes 1 and 2; in elasticity this
corresponds to Poisson contraction). Both directions perpendicular to the tensile
axis are assumed to be changed by the same amount, €;. This procedure is repeated
for each value of 3. In the case of loading along the [001] axis, the above procedure
corresponds to the calculation of the Bain’s path.

To obtain reliable total energies for shear deformations, the ES methods us-
ing a shape approximation of the crystal potential (e.g. spheroidization, as in the
LMTO-ASA, or standard KKR, or APW approaches) are not sufficient [13,14]
and full-potential treatments must be employed. Here we use the full-potential lin-
earized augmented plane wave (FLAPW) code described in detail in [15]. The ES
calculations have been performed within the local density approximation using the
exchange-correlation potential of Perdew and Wang [16]. For hydrostatic distortion,
where the symmetry of the lattice is maintained during the deformation process,
shape approximation methods are sufficient [17].

3. Results and discussion

The dependence of the total energy of copper vs. e3 for the loading along the
crystallographic axes [001], [110] and [111] is shown in Fig. 1. The corresponding
values of the tensile stress o are presented in Fig. 2. The curvatures of the en-
ergy curves and the slopes of o in the neighbourhood of €3 = 0 reflect a marked
anisotropy of the Young moduli. The inflexion points of the E vs. €3 curves cor-
respond to maxima of the applied forces; if some other instability of the material
does not occur before reaching the inflexion point, they indicate the theoretical
tensile strengths. The maxima of ¢ in Fig. 2 are very close to the inflexion points
of the E vs. €3 curves.

The inflexion points on the curves E vs. e3 correspond to the violation of the
stability condition (with the axis 3 as a loading axis)

Kss (K11 + Ki12) — 2Ki3 > 0, (1)
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In this paper we focus on the use of ab initio electronic structure calculations to
study mechanical stability of metallic materials that are deformed homogeneously
under the applied external forces. We simulate an idealized tensile test in a defect-
-free sample, i.e. without any defects such as dislocations, cracks etc. Thus, the
material does not fail at a local weak spot, but due to the fact that the whole lattice
becomes unstable at a strain. This instability occurs when the system can lower
its total energy by spontaneously undergoing an additional uniform deformation.
The values of stress and strain at which such instability occurs may be regarded as
defining the theoretical (ideal) tensile strength of the crystal [1,2]. This represents
an upper limit to the mechanical strength under given test conditions and may be
approached, for example, in whiskers or dislocation-free thin films. The theoretical
strength is an important concept in modern approaches to plasticity and fracture
(see e.g. [3]).

Most of the calculations of the ideal strength have been based on empirical
potentials adjusted to experimentally measured equilibrium quantities. However,
a material close to its theoretical strength limit is in a highly non-equilibrium
state and it is not guaranteed that the semiempirical descriptions adapted to the
equilibrium state are applicable under those severe conditions.

Ab initio electronic structure calculations are not limited in this way since
precise solutions of one-electron Kohn-Sham equation for a solid are obtained for
any state of material and the total energy is accurately calculated from fundamental
quantum theory. Thus, we obtain reliable results even for highly deformed states.
Nevertheless, most of the ES calculations were directed towards analysis of the
equilibrium state or to describe small deviations from that state. The equilibrium
state corresponds, of course, to the minimum of the total energy. However, the
theoretical strength is related to the maximum force which may be applied to
the material without compromising its stability. It is usually connected with an
inflexion point on the dependence of the total energy on deformation parameters,
far from the equilibrium state.

First-principles ES calculations of the ideal strength of materials are rare.
To our knowledge, the first paper dealing with the ideal tensile strength from
the first principles was that of Esposito et al. [4], using unrelaxed structures of
Cu. A decade later, Paxton et al. [5] calculated ideal twin strength for a number
of pure metals which is analogous to the ideal tensile strength studied here [6].
Further, several calculations of the properties of some elemental metals and simple
intermetallics far from equilibrium have been made, exploring their stability etc.,
but the corresponding inflexion points have not been interpreted in terms of the
strength [7—10]. An ab initio calculation of ideal tensile strength in tungsten has
been recently performed in [11].

Here we present ab initio simulations of idealized tensile tests in defect-free
single-crystalline copper loaded along the [001], [110] and [111] directions and in
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Fig. 1. Total energy, E, per atom vs. 3 for
the uniaxial deformation of copper loaded
along [001], [110] and [111] directions; Eo is

£3

Fig. 2. Applied stress, o, acting on the face
of the face-centered cell perpendicular to
the loading axis vs. €3 for uniaxial defor-

the ground-state energy of the fcc copper. mation of copper.

where K;; = 0?FE/da;0a; and a; are the dimensions of a rectangular face-centered
(Cu) or body-centered (NiAl) unit cell. This condition may also be expressed via
appropriately defined elastic constants [18,19].

It is seen from Table 1 that the experimental ideal strengths of copper are
much lower than the calculated maximum stresses. The maxima of o correspond to
relatively high values of strain, 3. Of course, in real samples some residual defects
are present and, therefore, one can expect that the experimental values should
be somewhat lower than the calculated ones. But in Table 1 we face an order of
magnitude differences. Let us note that this situation is very different from that
in tungsten, where the experimentally measured ideal strength was very close to
the calculated values [11]. This may be related to the fact that when deforming
an fcc crystal in uniaxial tension, there are no higher-symmetry structures on the
deformation path. As a result, the E vs. €3 curves do not have to bend towards
symmetry-dictated extrema [7,14] and the inflexion points appear at very high
values of strain and stress. (This is not the case of bee tungsten in [001] and [111]
loading directions [11] or B2 NiAl loaded in the [111] direction, as discussed below.)
In the case of copper, therefore, some stability condition may be violated before
such an inflexion point is reached. For example, after some uniaxial deformation has
been performed, it may be energetically more favorable for the crystal to undergo
a transformation da; = —das, if the stability condition

Ki1—Ki2>0 (2)
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Table 1. Tensile stresses of copper subjected to uniaxial loading along the [001], [110]

and [111] directions corresponding to inflexion points of the energy F vs. e3 and to max-

ima omax Of the stress vs. €3 curves. The calculated values of omax are compared with
experimental ideal strengths gexp

Direction €3 Omax [Mbar] Ooxp [Mbar]
[001] - 0.36 0.33 0.0123
[110] 0.79 0.31 0.0138
[111] 0.22 0.29 0.0306

¢ experimental values from Ref. [20] obtained from tensile stress measurement in copper
whiskers

is violated, or to change the angle between the crystallographic axes [2,18]. In
addition, imaginary frequency phonon modes may appear in deformed structures
before reaching the inflexion point.

Indeed, for the [001] loading direction, there is an indication that the con-
dition (2) is violated before the inflexion point at the E vs. €3 curve is reached.
Semiempirical calculations based on a Morse-function lattice model of a Cu crys-
tal have shown that K;; = Ko at e3 = 0.069 and o = 0.07 Mbar [18], which is
somewhat closer to the experimental value of 0.0123 Mbar. It may be expected
that similar instabilities will occur for the [110] and [111] orientations, as well. De-
termination of these instabilities and thus of more realistic values of ideal tensile
strength in single-crystalline copper from the first principles will be the subject of
future investigations.

The E vs. e3 curves and the corresponding o values for NiAl loaded along
the [001] and [111] directions are seen in Figs. 3 and 4. For the loading direction
[001], known as the “hard” single crystal orientation, there is no higher-symmetry
structure on the deformation path except the ground-state B2 structure [14] and,
therefore, no other symmetry-dictated extremum may be expected. The E vs. &3
curve increases quite steeply and its inflexion point occurs at relatively high values
of strain. For the [111] direction, the B1 (NaCl) structure occurs as a higher-
-symmetry structure at the deformation path and, therefore, the E vs. €3 curve
reaches a symmetry-dictated maximum at €3 &~ 0.7. The inflexion of the E vs.
€3 curve (corresponding to the maximum of the applied force and, very closely,
to the maximum of the applied stress omax) occurs at €3 = 0.21. The results are
summarized in Table 2. As there are, to the best of our knowledge, no NiAl whiskers
or other measurements of strength of the defect-free material, we could not compare
our results with any experimental values. Again, the stresses corresponding to the



150 KOVOVE MATERIALY, 36, 1998, &. 3

4500 0.5
4000 04 F
3500 | 03 b
= 3000 ¢ 02
8 2500 | -
; E 01 F
Q -
2 2000 g ot
g'li 1500 i
B 000 b 0.1 f
500 F o [111] 02 F o [111]
- [001] . [001]
0F -03
-500 L ! L L L L L ! -0.4 ! L I 1 I I I !
02 0 02 04 06 08 1 12 14 02 0 02 04 06 08 1 12 14
£3 €3

Fig. 3. Total energy, E, per cell vs. €3 for Fig. 4. Applied stress, o, acting on the face
the uniaxial deformation of NiAl loaded of the body-centered cell perpendicular to
along [001] and [111] directions; Eo is the  the loading axis vs. €3 for uniaxial defor-
ground-state energy of the B2 NiAl. The mation of NiAL
maximum of the [111] curve corresponds

to the B1 (NaCl) structure.

Table 2. Tensile stresses in NiAl subject to uniaxial loading along [001] and [111] direc-
tions corresponding to inflexion points of the energy vs. €3 and to maxima omax of the
stress vs. €3 curves

Direction €3 Omax (Mbar)
[001] 0.59 0.46
[111] 0.21 0.25

inflexion point would correspond to the theoretical tensile strengths provided no
other instability before this inflexion point has been reached. This will be the
subject of a future study.

Let us note here that the concept of the “hard” orientation has nothing to do
with the behaviour of our ideal tensile curves (Fig. 3) but is connected with the slip
behaviour of real (non-ideal) NiAl single crystals containing dislocations and other
defects. The primary Burgers vector in NiAl is (001), and if the loading direction
is along [001] the (001) dislocations have a zero resolved shear stress and do not
move. As a result, deformation occurs primarily by non-(001) dislocation processes
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which are more difficult. This gives rise to a high yield stress at low temperatures
as well as enhanced creep strength at elevated temperatures for [001] orientations
compared with the other crystal orientations [21].

4. Conclusions

We have shown that using the first-principles electronic structure calculations,
theoretical tensile strength of single crystals may be reliably calculated. No ad-
justable parameters or interatomic potentials are introduced — the calculation is
based on fundamental quantum theory in the local density approximation. In this
paper, we analyzed ideal tensile strength of copper and NiAl loaded uniaxially
along the main crystallographic directions. In the case of copper, an order of mag-
nitude difference between the theoretical results and available experimental data
indicates that some other instabilities occur on the deformation paths before the
calculated maximum tensile stresses can be reached. In NiAl, the anisotropy of
energy vs. strain curves may be understood in terms of existence or absence of
higher-symmetry structures along the deformation paths considered.

The approach presented here may be used to calculate the behavior of various
(defect-free) materials under extreme loading conditions. It is especially important
for materials for which the empirical interatomic potentials need not be sufficiently
reliable far from equilibrium, such as for various intermetallic compounds.
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