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YOUNG’S MODULUS CALCULATIONS FOR SYSTEMS
WITH PERIODICALLY DISTRIBUTED IDENTICAL
SPHEROIDAL PORES OF VARIOUS SIZE,
ORIENTATION, AND SHAPE ANISOTROPY

MIRIAM KUPKOVA, LUDOVIT PARILAK

In the presented paper the Young’s modulus for samples with periodically distributed
spheroidal pores is calculated. The dependence of Young’s modulus on the total porosity,
size, orientation, and shape anisotropy of pores is investigated. It is shown that presence
of pores flattened in the loading direction significantly reduces the Young’s modulus value
already at low porosity.

The Young’s modulus as a function of porosity is also calculated for the system
with the pore flattening dependent on the value of total porosity. The theoretical curve
is compared with the experimental one for ceramics Dy20Os3.

VYPOCET YOUNGOVHO MODULU PRE SYSTEMY
S PERIODICKY ROZLOZENYMI IDENTICKYMI
SFEROIDICKYMI PORMI ROZNEJ VELKOSTI, ORIENTACIE
A TVAROVEJ ANIZOTROPIE

V ¢lanku uvadzame vypocet Youngovho modulu pruznosti pre vzorky s periodicky
rozloZenymi pérmi tvaru rotaénych elipsoidov. Studujeme zavislost Youngovho modulu
od celkovej porovitosti, velkosti, orientdcie a od tvarovej anizotropie pérov. Ukazujeme,
ze pritomnost pérov splostenych v smere zatazenia vyznamne znizuje hodnotu Youngovho
modulu uz pri nizkej pérovitosti.

Vypocitali sme taktiez Youngov modul ako funkciu pérovitosti pre systém, v ktorom
splostenost poérov zavisi od hodnoty celkovej pérovitosti. Teoretickt krivku porovnédvame
s experimentalnou krivkou, ziskanou pre Dy2O3.

1. Introduction

Most man-made construction materials contain pores. In order to ensure a
fail-safe operation and reliability of machinery made from these materials, it is
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important to know the laws of the influence of porosity on mechanical properties
of substances, particularly on moduli of elasticity.

The many-year development of theoretical mechanics of composite (consequ-
ently also porous) materials brought a wide range of valuable results in the form of
theoretical methods of calculation of mechanical properties of such systems based
on terms and mathematical apparatus of continuum mechanics [1-8].

On the other hand, specialists involved in practical studies of mechanical pro-
perties proposed a number of empirical and semiempirical relations between the
modulus of elasticity and porosity [9-14]. The main reason of this was the relati-
vely simple mathematical structure of the proposed relations (as compared with
theoretical curves) that could fit to the experimental data.

Both above mentioned approaches use certain simplifying assumptions about
the shape and distribution of pores. It is assumed that macroscopically quasi-
homogeneous and quasi-isotropic specimens consisting of isotropic phases are in-
volved in most cases.

The presented paper brings the results of theoretical calculations of depen-
dence of Young’s modulus not only on total porosity but also on the shape, size,
and orientation of ellipsoidal pores which are periodically distributed throughout
the sample. A significant decrease of Young’s modulus is demonstrated already at
low values of total porosity in the cases when the specimens contain pores that
are flattened in the direction of the applied load. For one special case, where the
correlation between total porosity and pore shapes is assumed, theoretical curve is
compared with experimental data obtained from literature [15].

2. Calculation of Young’s modulus for specimens with periodically
arranged pores using methods of macroscopical theory of elasticity

The Young’s modulus was calculated using the procedure analogical to that
employed by Wang [11] and Phani and Niyogi [12]. Our calculations were
carried out for a porous body of constant macroscopical cross-section A and length
L. The application of tensile force W to this body in the direction of z axis results in
the elongation AL. An effective Young’s modulus E is then defined by the relation

w
E=-A (1)
&

If A(z) is the real cross-section of the body at the point z, i.e. the area of the
section across “solid” parts excluding pores, then the elongation of the layer of a
body A(z)dz is

w
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where Ej is the Young’s modulus of the material of the investigated body, i.e. the
body without pores. The total elongation is then as follows:

B L
ALz/O 6(z)dz=/0 %dz. (3)

By combining equations (1), (2) and (3) we obtain

- (4)

E, (L 4
/ ——dz
o A(2)

Similarly, porosity of a body is characterized by the relation

L
P=1- ﬁ /0 Al)ds, (5)

In the process of deriving the equation (4) the transverse contraction of the body
occurring at its longitudinal elongation is not taken into consideration. The lower
is the longitudinal elongation, or Poisson’s ratio, the higher is the accuracy of this
approximation (omission). Theoretically, we can imagine infinitely small values of
load W as well as of elongation AL, therefore expression (4) can be considered
valid with sufficient accuracy.

In principle, relations (4) and (5) allow us to calculate the dependence of
Young’s modulus on porosity for real distribution and geometry of pores represen-
ted by the real cross-section of the body A(z) as a function of the coordinate z.
However, practical calculation can largely be carried out only for certain ideali-
sed types of geometry (e.g. periodical distribution of pores of simple geometrical
shapes, a body produced by cubic arrangement of spherical polyhedrons [11], etc.).

In the real calculations, we used periodically distributed pores of ellipsoidal
shape and all pores in the given specimen had the same size, shape and orientation;
in that case A(z) is a general periodic function.

For simplicity, we chose distribution of pores in the form of a simple cubic
lattice with the “lattice” parameter a*. In such a case the change in porosity is
not caused by the change in the number of pores but by the change of their value
at preservation of their number and shape (but not necessarily the maximum and
minimum pore dimensions ratio — that depends on the problem studied). In order to
simplify the calculations, we consider mostly isolated pores, however, in some cases
also the pores interconnected in one direction. The details of the calculations are
not presented. From the mathematical point of view some integrals are involved,
sometimes very complex. We present only the final relations.
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3. Pores in the form of spheroids

We consider pores in the shape of spheroids (Fig. 1). The half-axis in the
direction of the rotational axis is b and the half-axis in the direction perpendicular
to the rotational axis is a. The half-axis ratio is denoted f = b/a > 0. Some shapes
of spheroid pores with different ratios f are in the Fig. 2. The angle between the
rotational axis of pores and the direction of specimen tension is denoted as «. The
exact direction of rotational axis of individual pores is unimportant because we
have spheroids and because of the form of the equations (4) and (5). It is necessary
to preserve the slope with regard to the axis of tension. Spheroids can therefore
acquire different orientation in the specimens and the only requirement is that the
slope of their rotational axis with regard to the direction of tension is a.

6 Fig. 1. A pore in the shape of a spheroid.

Characteristic parameters: b — size of half-

-axis in the direction of rotational axis, a —

d size of half-axis in the direction vertical to

> the rotational axis, @ — an angle between

the rotational axis of an spheroid (pore)
and the direction of specimen loading.
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Fig. 2. Some shapes of spheroid pores with different ratios f = b/a. The f values for the
examples illustrated (from left to right) are: f — oo, 2, 1, 0.5, 0.
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In that case the normalized Young’s modulus acquires the form

E 1

Ey 2
1-26+ gf— arctan

VP %g—P

where

_(3P\* 5 2 a2
5—(47rf) \/s1§a+f cos? a,

while parameters P, f and o must satisfy the following conditions:

P
~ (sin® @ + f2 cos? a)? <

f

e

and at the same time

f?(fz sin? & + cos? a)% <
If the parameters comply with the specified conditions closed isolated pores are
involved.

Using A. (A. is a ratio of the minimum load-bearing cross-section of the
sample, i.e. the minimum value of A(z), to the geometrical cross-section A; so
0 < A, < 1), the expression is as follows:

ol 3

E _ 1
Ey in” ? cos” ) ¥ - Erl
1_2(sm a+ f*cos” @) " S . arctan S

(rf)? VA, Ac

H

(60)

while parameters A., f, @ must satisfy the following conditions:

1- A,
f

Nl

(sin? a 4+ f2cos?a)? < %

and at the same time

1- A,
f
The quantity A, can serve as a qualitative estimation of the mean distance bet-

ween pores in the sample. The higher A, corresponds to the higher mean distance
between pores.

(sin? o + f2cos? a)?(f2sin® a + cos? @) <

N
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If f = 1 we obtain a special case — spherical pores. Then the Young’s modulus
obeys the following expression:

L 1 — .
Eo 3 3 -6
6 ,)? 2 (Z‘/"TP)
1-— (—-P) + arctan
™ 2 2
3 3 3 3
Va1 - (Z\/;p> 1- (Zﬁp)
(7a)
Expressed in terms of A,
£ !  I=do2Z, {0
Eo 2 - 4

) l_ﬁ( l—Ac——;—carctan A )

We derive further an expression for the Young’s modulus of a body with pores
interconnected in the direction of tension, however, not in the direction perpendi-
cular to the tension in the case when the rotational axis of spheroids is oriented in
the direction of tension (a = 0). The expression is as follows:

E 12f2(1 - P) —
E___ Vi/BPU-P-= -
B 4v3f% arct =
VDY 2Ty =)
and the relevant parameters have to satisfy conditions f > 1 and
7r 2o
—E PPl i,
g s = ( 1 12)
Expressed in terms of A,
V4 1
& VYA —gl—Acgg. (8b)

s
E, x 42
2f arctan M
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4. Comparison with experimental data

Verification of correctness of our results is rather complicated because, besides
the total porosity data, we also need the data about the shape or, as the case may
be, about orientation of pores.

Results concerning the dependence of Young’s modulus on the flattening of
pores (illustrated for various situations in Figs. 3, 4, 5) are confirmed (at least
qualitatively) by the explanation of Dean and Lopes [16] of the origin of positive
curvature of the Young’s modulus-porosity curve, observed in ceramic materials.
In opinion of Dean and Lopes the pores in ceramic materials show a tendency to
become more spherical with the increasing porosity. This increase in the spherical
character of pores with the increase of total porosity was also observed experimen-
tally in microphotographs of thin sections of MgO [17].

Theoretical studies carried out in low-porosity materials revealed that the
slope of the Young’s modulus-porosity curve increases with the flattening of pores
(the same result, from the qualitative point of view, was obtained in this article
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Fig. 3. Dependence of a normalized Fig. 4. Normalized Young’s modulus E/Eq

Young’s modulus E/Eq on the porosity P
for a model system with isolated pores in
‘the shape of spheroids with rotational axis
oriented in the direction of loading and va-
rying values of the ratio f between dimen-
sions of pores in the direction of the rotati-
onal axis and perpendicular to the axis. For
the curves shown in the picture the value
of f increases in the direction of the arrow
and acquires values 0.2, 0.4, 0.6, 0.8, 1.0,
and f — oo.

of a model system with pores in the shape

of spheroids with rotational axis oriented

in the direction of loading as a function of

the ratio f between the dimension of an

spheroid in the direction of the rotational

axis and the direction perpendicular to the
axis for porosity P = 0.1.
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Fig. 5. Normalized Young’s modulus E/Eq
of a model system with pores in the shape
of spheroids as a function of an angle bet-
ween the loading axis and rotational axis
of pores for various values of the ratio f
between the dimensions of pores in the di-
rection of their rotational axis and the di-
rection perpendicular to the axis at total
porosity P = 0.1. For the curves shown in

Fig. 6. Normalized Young’s modulus E/Eg
as a function of porosity P. Comparison
of experimental data for Dy20Os (crosses)
with theoretical data (solid line) calculated
(according to 6a) for the system with po-
res in the shape of flattened spheroids. The
flattening decreases linearly with growing
porosity (f = 0.04 for P = 0.02; f = 0.382
for P =0.2).

the picture the value of f increases in the
direction of arrow and acquires values 0.2,
0.6, 1, 2.

for periodically distributed pores). Thus, if the flattening of pores decreases with
the growth of porosity, the slope of the Young’s modulus-porosity plot decreases,
too, and the resulting curve exhibits a positive curvature. This idea is illustrated
in Fig. 6. In this picture there are plotted the experimental data for the Young’s
modulus of Dy;03 and the theoretical curve obtained according to our equation
(6a) for the Young’s modulus of the specimen with pores in the shape of flattened
spheroid the flattening of which decreases with the increase of total porosity. We
used a linear growth of the ratio of the shorter and longer axis of a spheroid, ranging
from 0.04 at two per cent porosity to approx. 0.38 at twenty per cent porosity, as
the simplest model in such a case. Both behaviours show a qualitative agreement.

5. Discussion and conclusions

The presented study was intended as a theoretical calculation of Young’s mo-
dulus of elasticity of porous materials as a function of porosity (if necessary, also
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of additional characteristics of pores — shape, orientation) for a specimen with
periodically arranged pores.

In our calculations we used an equation expressing Young’s modulus of elas-
ticity as a functional of the real area of the specimen cross-section, i.e. the area
of cross-section intersecting the “solid parts” and not the pores as published in
[11, 12]. In this approach, the sample with any (low or high) pore concentration
is treated as a whole. All pores (isolated or interconnected) contained in the given
sample with their “interactions”, real geometrical shapes, and spatial distributions
are taken into account.

To perform analytical calculations, a system consisting of a continuous mat-
rix containing periodically arranged identical pores was used as a model system.
Changes in porosity were attained by changing the size of pores while their number,
shape and orientation remained constant.

The expressions for the Young’s modulus as a function of total porosity (or
other more detailed characteristics of pores such as the ratio of their dimensions
in the direction of tension and perpendicular to tension, orientation, etc.) were
derived for ellipsoidal pores either isolated or interconnected.

The system with pores of an anisotropic shape (i.e. pores with rather different
maximum and minimum dimensions) exhibits, for the given value of total porosity,
rather high sensitivity of Young’s modulus to orientation of pores with regard to
the direction of the applied tension. The value of Young’s modulus is higher for the
pores “elongated” in the direction of tension than for the pores “flattened” in that
direction. This is illustrated by the calculation of the Young’s modulus for both the
system with pores changing gradually from “flattened” spheroids to elongated ones
while the rotational axis remains in the direction of tension (Fig. 3, 4), and the
system with pores in the shape of flattened spheroids, however, with varying slope
of rotational axis with regard to the direction of tension (gradual change from the
flattened to the elongated pores) (Fig. 5).

The verification of applicability of our results (for periodically arranged pores)
is more complex because, besides the data on total porosity, we need to know the
character of porosity (shape of pores, anisotropy of the shape, orientation of pores,
etc.) for the real specimen. The explanation of the origin of positive curvature
of the experimentally measured Young’s modulus-porosity curves in the ceramic
materials presented in the study [16] speaks in support of our results. The authors
of the study mentioned are of the opinion that the reason for positive curvature is
the increase in sphericity of pores with the growth of total porosity. Fig. 6 shows
a qualitative agreement between experimental data and the curve obtained on the
basis of our results for the Young’s modulus of a specimen with pores in the shape
of flattened spheroids provided that the ratio of the length of the shorter and longer
axis of an ellipsoid increases linearly with the porosity.
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