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Abstract

Metal oxides (XO2) have been extensively studied experimentally and theoretically. How-
ever, atomistic insights into systems like ZrO2 and CeO2, critical in nanocatalysis, remain
incomplete. Using ab initio density functional theory (DFT) with the FP-LAPW method
in the Wien2k framework and the PBE exchange-correlation functional, we examined the
physical and chemical properties of cubic Fm-3m oxides (XO2, X = Ti, Zr, Hf, Ce). Lat-
tice parameters increase with atomic mass except for HfO2, which deviates due to stronger
ionic bonding. ZrO2 is the stiffest, followed by HfO2, TiO2, and CeO2. Electronic analysis
shows TiO2’s narrow band gap (1.15 eV), ZrO2 and HfO2’s wide gaps (3.16 and 3.77 eV),
and CeO2’s moderate gap (2.17 eV) with redox activity. PDOS analysis highlights O 2p and
metal d-/f-orbital interactions. These results emphasize distinct properties influencing their
applications in photocatalysis, dielectrics, and catalysis, warranting further exploration.
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1. Introduction

Metal oxides are an essential class of materials
known for their diverse properties and widespread
applications in various technological and industrial
fields. Those with moderate to wide band gaps, such as
TiO2, ZrO2, HfO2, and CeO2 are particularly notable
for their roles in semiconductors for dye-sensitized so-
lar cells, catalysts, fuel cells, resistors, gas sensors,
transparent optical devices, and optical coatings [1–7].
Their unique characteristics, such as chemical stabil-
ity, optical transparency, and tunable electronic prop-
erties, make them highly versatile. The functional per-
formance of these oxides is influenced by several fac-
tors, including particle size, crystallinity, surface area,
and synthesis techniques, which play critical roles in
determining their structural, electronic, and surface
properties [8–11].
TiO2 is widely recognized for its applications in

photocatalysis, solar energy devices, and environ-
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mental remediation [12–22]. It has various structural
forms, including rutile, anatase, brookite, and cu-
bic Fm-3m phases [23, 24]. While the rutile and
anatase phases are naturally stable and commonly
employed in practical applications, the cubic Fm-3m
phase structure (Fig. 1) is metastable and typically
synthesized under high-pressure or specific deposition
conditions [25, 26]. This cubic form offers unique prop-
erties, such as enhanced optical and electronic behav-
ior, which make it promising for advanced technolo-
gies.
ZrO2, on the other hand, is renowned for its ex-

ceptional thermal and mechanical properties, making
it indispensable in applications such as thermal bar-
rier coatings and solid oxide fuel cells [27–33]. While
the material naturally adopts a monoclinic configu-
ration at standard conditions, it can be transformed
into a cubic Fm-3m structure through thermal treat-
ment or by introducing specific dopants like yttria or
rare-earth elements. The resulting phase transforma-
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Fig. 1. Fm-3m phase structure (Ti, Zr, Hf, Ce in Cyan):
at (0, 0, 0), (1/2, 1/2, 1/2), (1/2,0,0), (0,1/2,0), (0,0,1/2);
oxygen o in red at: (1/4, 1/4, 1/4), (3/4, 3/4, 3/4).

tion dramatically improves the material’s ability to
conduct ions, making it particularly valuable for ad-
vanced energy applications [34–44]. Its robust nature
and ability to withstand extreme conditions make it
suitable for structural ceramics and high-temperature
applications.
On the other hand, HfO2 shares many similarities

with ZrO2 but stands out due to its exceptional di-
electric properties, which have positioned it as a cor-
nerstone material in modern microelectronics, partic-
ularly as a high-k dielectric in semiconductor devices
[45–49]. Like ZrO2, HfO2 exists in monoclinic, tetrag-
onal, and cubic phases, with the cubic Fm-3m phase
stabilized at elevated temperatures or under specific
doping conditions [50, 51]. This phase provides en-
hanced thermal stability and mechanical robustness,
making HfO2 suitable for demanding applications, in-
cluding aerospace technologies and thermal barrier
coatings. Its ability to maintain structural and elec-
tronic integrity under extreme conditions further high-
lights its potential in advanced technological applica-
tions.
Furthermore, CeO2, similar to the other oxides dis-

cussed, is a highly versatile material with significant
applications in catalysis, energy storage, and environ-
mental remediation [52–55]. Its most stable phase at
ambient conditions is the cubic Fm-3m fluorite struc-
ture, which is crucial for its remarkable catalytic prop-
erties [56, 57]. The Fm-3m phase facilitates efficient
oxygen vacancy migration, a key feature that drives
CeO2’s redox activity and enables its vital role in au-
tomotive catalytic converters and fuel cells [58, 59].
Beyond catalysis, CeO2’s stability, high ionic conduc-
tivity, and ability to operate under extreme condi-
tions make it indispensable in energy storage systems
and other advanced technologies [60]. These charac-
teristics, along with its durability and structural in-

tegrity, reinforce CeO2’s potential in cutting-edge ap-
plications.
Although numerous studies have explored the

properties of TiO2, ZrO2, HfO2, and CeO2, both ex-
perimentally and theoretically [61–65], there remains
a notable gap in the literature regarding the under-
standing of the differences between these oxides, espe-
cially when considering them in the same phase struc-
ture, such as the cubic Fm-3m phase. These oxides,
which belong to Group 4 and Group 5 of the peri-
odic table, share similar chemical families but may
exhibit distinct structural, mechanical, and electronic
properties. This study aims to address this gap by sys-
tematically investigating whether intrinsic differences
exist in the properties of these oxides under identical
structural conditions, shedding light on their unique
characteristics and providing deeper insights into their
potential applications.
The content of this study is arranged in the fol-

lowing sequence: in section 2, we provide a thorough
explanation of the computational procedures, param-
eters, and setup utilized throughout this investiga-
tion. The third section presents the results and discus-
sion, focusing on the structural, mechanical, and elec-
tronic properties of the cubic oxides (c-TiO2, c-ZrO2,
c-HfO2, and c-CeO2). Finally, the article summarizes
the key findings and insights from this comparative
study.

2. Computational details

The structural, elastic, and electronic properties
of the TMs Fm-3m XO2 (X = Ti, Zr, Hf, Ce) ox-
ides were studied using the full-potential linearized
augmented plane wave (FP-LAPW) method [66, 67].
The Kohn–Sham equations [68] were solved within
the density functional theory framework. The calcu-
lations employed the generalized gradient approxima-
tion (GGA). In the full-potential scheme, the wave
function, potential, and charge density are expanded
into two separate bases [69]. Inside the atomic spheres,
the wave function is expanded in spherical harmonics,
while in the interstitial regions, it is represented using
plane waves. The muffin-tin radii (RMT) were chosen
to prevent charge leakage from the core and to ensure
better energy eigenvalue convergence. The RMT val-
ues were set to 2.0 a.u. for Ti, Zr, and Hf, 2.22 a.u. for
Ce, and 1.75 a.u. for O. The plane-wave expansion was
truncated at Rkmax = 8.0, ensuring a well-converged
basis set while maintaining computational efficiency.
The self-consistency criterion for total energy conver-
gence was set to 10−6 Ry.
The wave functions in the interstitial region were

expanded in plane waves with a cutoff of 75 Ry. In-
tegrals over the Brillouin zone were performed using
216 k-points for GGA Perdew-Burke-Ernzerhof (PBE)
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Ta b l e 1. Lattice parameters and bulk modulus of various cubic oxides

Oxides a0 (Å) B (GPa) B′ Reference

4.836 293.75 4.375 This work
c-TiO2 4.73 286 3.99 Ref. [73]

4.87 202 1.3 Exp. [74]

5.15 233.44 4.26 This work
c-ZrO2 5.151 228 4.43 Ref. [87]

5.11 – – Exp. [88]

5.102 248.327 4.272 This work
c-HfO2 5.071 – – Ref. [87]

5.08 – – Exp. [76]

5.473 142.85 4.049 This work
c-CeO2 5.44 184.9 4.24 Ref. [75]

5.41 204 4.4 Exp. [77]

[70] in the irreducible Brillouin zone, with the mod-
ified tetrahedron method [71]. For electronic proper-
ties, a dense mesh of k-points was used. The Brillouin
zone integration was carried out with 1728 k-points in
PBE.

3. Results and discussion

3.1. Structural properties

The structural properties of XO2 (X = Ti, Zr,
Hf, Ce) are obtained by fitting the total energy of
each unit cell against its volume using the Birch-
-Murnaghan equation of state [72]. The unit cell vol-
ume of the compounds is optimized to obtain struc-
tural properties like lattice constant, a0 (Å), bulk
moduli B (GPa), and the bulk modulus derivative B’.
The calculated structural parameters are presented in
Table 1.
TiO2: The lattice parameter a0, bulk modulus B,

and pressure derivative B′ of TiO2 vary across dif-
ferent studies, reflecting differences in computational
and experimental approaches. The obtained value of
a0 (4.836 Å) lies between those found in other refer-
ences, 4.73 Å [73] and 4.87 Å [74], with the larger a0
in the experimental value [74] suggesting that real-
world factors, such as thermal expansion and imper-
fections, contribute to the variation. The bulk modu-
lus B in this work (293.75 GPa) is higher than both
the theoretical value (286GPa) and the experimen-
tal value (202GPa), indicating that theoretical mod-
els predict a stiffer material, possibly due to idealized
conditions, while experimental values are influenced
by defects and temperature effects. Similarly, the pres-
sure derivative B′ in this work (4.375) is higher than
the theoretical value (3.99) and much larger than the
experimental value (1.3), suggesting that theoretical

models predict a stronger increase in incompressibil-
ity under pressure than observed experimentally. How-
ever, despite these small differences, our results are in
good agreement with both previous DFT calculations
and experimental reports.
ZrO2: The calculated structural properties of c-

ZrO2 show a good agreement across various stud-
ies. The lattice parameter a0 is 5.15 Å. This value
closely matches the one from the previous DFT finding
(5.151 Å) and is slightly larger than the experimen-
tal value from (5.11 Å). The bulk modulus B in this
work is 233.44 GPa. This value is slightly higher than
the one in the DFT calculation (228 GPa), suggesting
that the material is modeled as more incompressible
under ideal conditions. The pressure derivative B′ in
this work is 4.26. This is somewhat lower than the
value in [63] (4.43 Å), indicating a less pronounced
increase in incompressibility with pressure compared
to the theoretical prediction.
HfO2: The obtained lattice parameter value a0 is

5.102 Å, slightly larger than the value in [75] (5.071 Å)
and similar to [76] (5.08 Å). The bulk modulus B is
248.327GPa, but no data is available in the other ref-
erences for comparison. The pressure derivative B′ is
4.272, with no corresponding values in the other stud-
ies. Overall, our results are consistent with previous
DFT and experimental findings.
CeO2: In this work, a0 is 5.473 Å, slightly larger

than the values in [75] (5.44 Å) and [79] (5.41 Å). The
bulk modulus B is 142.85 GPa, which is lower than
the values in [75] (184.9 GPa) and [77] (204 GPa). The
pressure derivative B′ is 4.049, slightly smaller than
both the values in the literature. Overall, the results
are in good agreement with both DFT and experimen-
tal studies, showing only minor variations.
It is interesting to observe that the lattice param-

eters for TiO2, ZrO2, and CeO2 increase with atomic
mass, as expected due to the larger ionic radii of the
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Ta b l e 2. The calculated elastic constants C11, C12, and C44, bulk modulus B, Young’s modulus E, shear modulus G

Oxides C11 C12 C44 B (GPa) G (GPa) E (GPa) Reference

604.90 69.209 43.58 248.10 88.37 78.99 This work
c-TiO2 589 75 43 250 84 75.53 Ref. [79]

603 75 43 251 90 80.39 Exp. [80]

535 97 51 243.00 219.00 219.79 This work
c-ZrO2 507 99 63 235 204.00 234.18 Ref. [81]

596.33 137.04 74.34 290.134 136.464 545.12 Exp. [82]

564.08 86.71 94.90 245.83 127.27 102.24 This work
c-HfO2 559 93 69 248 115 99.6 Ref. [83]

578.2 120.9 82.6 283.2 130 139.4 Exp. [84]

335 97 51 176.33 119 248.24 This work
c-CeO2 371.83 114.69 62.71 200.40 128.57 252.88 Ref. [85]

354.790 139.272 51.195 211.11 107.76 255.28 Exp. [86]

metal cations in these compounds. However, the case
of HfO2 deviates from this pattern, with its lattice
parameter being slightly smaller despite Hf having
a higher atomic mass. This could be explained by
stronger ionic bonding in HfO2, which might coun-
teract the expected increase in lattice size. The size
of the Hf cation and factors like crystal packing, po-
larization effects, and electron shielding may lead to a
more compact structure. Additionally, phase stability
differences might also influence the lattice parameter
of HfO2.
The differences in bulk modulus for TiO2, ZrO2,

HfO2, and CeO2 reflect bonding strength and crys-
tal structure variations. TiO2 has the highest bulk
modulus (293.75GPa), indicating it is the stiffest due
to strong Ti-O bonds. ZrO2 (233.44GPa) and HfO2
(248.33GPa) show intermediate values, with HfO2
slightly stiffer, possibly due to stronger Hf-O bonds.
CeO2 has the lowest bulk modulus (142.85GPa), sug-
gesting weaker Ce-O bonds and a more compressible
structure.
The variations in the pressure derivative of the

bulk modulus B′ across TiO2, ZrO2, HfO2, and CeO2
show differences in how these materials respond to
pressure. TiO2 has the highest B′ (4.375), indicating
a greater increase in resistance to compression with
pressure. ZrO2 (4.26) and HfO2 (4.272) show similar
behavior, with moderate responses to pressure. CeO2
has the lowestB′ (4.049), suggesting a weaker increase
in incompressibility under pressure. These differences
imply that atomic size influences B′, but bonding
strength and structural characteristics mainly deter-
mine the pressure response.

3.2. Elastic properties

The elastic constants Cij are used to characterize
the material’s response to applied macroscopic stress,

providing valuable information on its stability and
stiffness [67]. The values of C11, C12, and C44 are pre-
sented in Table 2. A crystal structure can only exist in
a stable or metastable phase if its elastic constants sat-
isfy specific relationships. The traditional mechanical
stability conditions for cubic crystals at equilibrium
are expressed in terms of elastic constants as described
in Ref. [78]:

C11 − C12 > 0,
C44 > 0, (1)
C11 + 2C12 > 0.

3.2.1. Elastic constants

The present table compares the elastic constants
and mechanical properties of c-TiO2. The properties
include C11, C12, C44, bulk modulus (B), shear mod-
ulus (G), and Young’s modulus (E). This work re-
ports C11 as 604.90GPa, which is slightly higher than
589GPa in [79] and similar to 603GPa in [82].
This indicates a higher resistance to uniaxial com-

pression in this work compared to [79], with consis-
tency observed between this work and [80]. Besides,
the value of C12 in this work is 69.209GPa, which
is lower than the 75GPa in both [79] and [80]. This
suggests a reduced resistance to deformation along di-
rections perpendicular to the crystal axis in this work.
The value of C44 is consistent across all studies, with
values of 43.58 GPa (this work), 43GPa [83], and
43 GPa [82], indicating a similar resistance to shear
deformation along the crystal planes.

3.2.2. Mechanical properties

The bulk modulus mentioned in this work from Ta-
ble 2 is 248.10GPa, close to 250 GPa [79] and 251GPa
[80], reflecting similar resistance to uniform compres-
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sion across all studies. The shear modulus in this work
is 88.37GPa, slightly higher than 84 GPa in [79] and
lower than 90 GPa in [80]. These variations are con-
sistent with the differences in C11 and C12 between
the studies. The Young’s modulus in this work is
78.99GPa, which is slightly higher than 75.53GPa in
[79] but lower than 80.39GPa in [80]. These differ-
ences reflect the variations in the shear modulus and
bulk modulus.
The results obtained in this work are generally con-

sistent with previous studies, with minor variations
observed in the elastic constants and mechanical prop-
erties. The slight discrepancies in values such as C11,
G, and E can be attributed to differences in computa-
tional methods or approximations used in the calcula-
tions, but these differences do not significantly impact
the overall understanding of the material’s mechanical
behavior.
ZrO2: The elastic constants and mechanical prop-

erties for ZrO2 are compared across this work, [81],
and [82]. In this work, the values of C11, C12, and
C44 are 535, 97, and 51, respectively, resulting in
a bulk modulus of 243.00GPa, a shear modulus of
219.00GPa, and a Young’s modulus of 219.79GPa.
In [81], the values are 507, 99, and 63 for C11,
C12, and C44, respectively, leading to a bulk mod-
ulus of 235.00GPa, a shear modulus of 204.00GPa,
and a Young’s modulus of 234.18GPa. In [82], the
values of C11, C12, and C44 are much higher, with
C11 = 596, C12 = 137.04, and C44 = 74.34, giving
a bulk modulus of 290.134GPa, a shear modulus of
136.464GPa, and a Young’s modulus of 545.12GPa.
These discrepancies suggest that the material in [82]
is much stiffer, likely due to different computational
techniques, material phases, or approximations used,
whereas the results from this work and [81] indicate
relatively lower stiffness value [82] presents higher val-
ues, with C11 = 578.2, C12 = 120.9, and C44 = 82.6,
yielding a bulk modulus of 283.2GPa, a shear modu-
lus of 130GPa, and a Young’s modulus of 139.4 GPa
for ZrO2.
HfO2: The elastic constants and mechanical prop-

erties for HfO2 are compared between this work, [83],
and [84]. In this work, the values C11, C12, and C44
are 564.08, 86.71, and 94.90, respectively, resulting in
a bulk modulus of 245.83GPa, a shear modulus of
127.27GPa, and a Young’s modulus of 102.24GPa.
[83] reports values of C11 = 559, C12 = 93, and C44 =
69, with corresponding mechanical properties of a bulk
modulus of 248 GPa, a shear modulus of 115 GPa, and
a Young’s modulus of 99.6 GPa. [84] presents higher
values, with C11 = 578.2, C12 = 120.9, and C44 =
82.6, yielding a bulk modulus of 283.2 GPa, a shear
modulus [84] of 130 GPa, and a Young’s modulus of
139.4 GPa.
The results indicate a relatively consistent trend

in the elastic constants across the studies, with minor

differences observed in C11 and C12. This suggests
that the material’s stiffness is relatively stable, but
with slight variations in its resistance to compres-
sion and shear between different computational ap-
proaches. The mechanical properties, particularly the
bulk modulus, shear modulus, and Young’s modulus,
show more noticeable variations. [84] reports the high-
est values, indicating a material with greater over-
all stiffness compared to the results from this work
and [83]. All values point toward HfO2 being a rela-
tively stiff and stable material, with subtle differences
in stiffness depending on the specific computational
framework.
CeO2: The elastic constants and mechanical prop-

erties for CeO2 are compared between this work, [85],
and [86]. In this work, the values of C11, C12, and
C44 are 335, 97, and 51, respectively, resulting in
a bulk modulus of 176.33GPa, a shear modulus of
119GPa, and a Young’s modulus of 248.24GPa. Ref-
erence [85] reports C11 = 371.83, C12 = 114.69, and
C44 = 62.71, yielding a bulk modulus of 200.40 GPa,
a shear modulus of 128.57GPa, and a Young’s mod-
ulus of 252.88GPa. Reference [86] presents values of
C11 = 354.79, C12 = 139.27, and C44 = 51.20, result-
ing in a bulk modulus of 211.11GPa, a shear modulus
of 107.76GPa, and a Young’s modulus of 255.28GPa.
The comparison reveals that the results from [85]

and [86] generally show a higher stiffness in terms
of bulk modulus, shear modulus, and Young’s mod-
ulus than this work. The variations in C11, C12, and
C44 between the studies point to different material be-
haviors, with [85] showing higher values for the elas-
tic constants and mechanical properties, suggesting a
slightly stiffer material. This is contrasted by the re-
sults from [86], which show a higher Young’s modu-
lus but lower shear modulus compared to [85]. Several
elements could explain the variations between these
three result sets: the choice of computational method-
ology, the selected approximation schemes, and the
specific parameters employed in calculations. Despite
these discrepancies, all three studies consistently indi-
cate that CeO2 exhibits relatively high stiffness, with
small variations in the values of elastic constants and
mechanical properties depending on the method and
assumptions used.
For the comparison between these oxides, TiO2

has a bulk modulus of 248.10GPa, shear modulus of
88.37GPa, and Young’s modulus of 78.99GPa, indi-
cating moderate stiffness. ZrO2 shows higher shear
and Young’s moduli (219.00 and 219.79GPa, re-
spectively) despite a slightly lower bulk modulus
(243.00GPa). This indicates better resistance to shear
and tension in ZrO2, which is stiffer overall than TiO2.
For HfO2, the bulk modulus is 245.83GPa, the

shear modulus is 127.27GPa, and Young’s modulus
is 102.24GPa. It is stiffer than TiO2, especially in
terms of shear resistance. CeO2, however, shows the
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Fig. 2. Band structures of cubic dioxides: (a) c-TiO2, (b) c-ZrO2, (c) c-HfO2, and (d) c-CeO2, illustrating their distinctive
electronic properties and band gap variations.

lowest bulk and shear moduli (176.33 and 119GPa),
though it has a relatively high Young’s modulus of
248.24GPa. This suggests CeO2 is more compressible
and shear-sensitive but retains good tensile stiffness.

3.3. Electronic properties

The electronic properties of materials are crucial
for determining their functional applications in vari-
ous fields. Therefore, Fig. 2 illustrates the band struc-
tures of the different c-XO2 studied oxides. The band
gap of TiO2 is 1.15 eV, reflecting its semiconducting
nature. This narrow gap allows visible-light absorp-
tion, making it suitable for photocatalysis but prone
to carrier recombination. ZrO2 has a wider band gap of
3.16 eV, indicative of its insulating behavior. Its strong
ionic bonds result in high thermal and electrical sta-
bility. HfO2 exhibits the largest band gap at 3.77 eV,
reinforcing its status as an excellent insulator. This
property, combined with low carrier mobility, makes
it ideal for dielectric applications in microelectronics.
CeO2 has a moderate band gap of 2.17 eV, influenced
by the mixed valence states of cerium. This feature en-
hances its redox properties and makes it effective for

catalytic and oxygen storage applications. The band
structures demonstrate significant differences in the
electronic behaviors of these oxides, arising from vari-
ations in bonding strength and electronic interactions.
The (PDOS) illustrated in Fig. 3 for the various

hybrides studied reveals distinct electronic structures
and bonding characteristics. The partial density of
states (PDOS) plots for TiO2, ZrO2, HfO2, and CeO2
provide valuable insights into their electronic struc-
tures and bonding characteristics, which are governed
by the contributions of specific atomic orbitals. In
ZrO2, the valence band is dominated by O 2p orbitals,
while the conduction band is primarily composed of Ti
3d orbitals, reflecting strong hybridization between O
2p and Ti 3d states. This hybridization results in a
band gap of 1.15 eV, which is relatively narrow and
supports TiO2’s semiconductor properties, making it
suitable for applications in photocatalysis and opto-
electronics. In ZrO2, the valence band is similarly
dominated by O 2p orbitals, but the conduction band
is characterized by Zr 4d orbitals, leading to a wider
band gap of 3.16 eV. This larger band gap and weaker
hybridization compared to TiO2 align with ZrO2’s in-
sulating behavior and its use in high-k dielectrics and
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Fig. 3. Partial density of states (PDOS) for (a) c-TiO2, (b) c-ZrO2, (c) c-HfO2, and (d) c-CeO2, revealing their electronic
structure and bonding characteristics.

thermal barrier coatings. HfO2 exhibits a compara-
ble trend, with O 2p orbitals dominating the valence
band and Hf 5d orbitals shaping the conduction band,
resulting in a band gap of 3.77 eV.
The slightly larger band gap and reduced hy-

bridization in HfO2 enhance its stability and suit-
ability for advanced electronic applications, such as
gate oxides in transistors. In contrast, CeO2 displays a
smaller band gap of 2.17 eV, attributed to the presence
of Ce 4f states near the Fermi level, which introduces
unique electronic properties such as redox activity and
oxygen vacancy formation. The O 2p orbitals in all
materials play a critical role in forming strong cova-
lent bonds with the metal cations, while the metal d-
orbitals (Ti 3d, Zr 4d, and Hf 5d) and f-orbitals (Ce 4f)
determine the conduction band characteristics and in-
fluence the materials’ optical, catalytic, and electronic
properties.

4. Conclusions

In summary, we have performed ab initio model-

ing using the Wien2k software with the FP-LAPW
method and the PBE exchange-correlation functional
to investigate the structural, electronic, and mechani-
cal properties of TiO2, ZrO2, HfO2, and CeO2. Our re-
sults show that the lattice parameters of TiO2, ZrO2,
and CeO2 increase with atomic mass, in line with the
larger ionic radii of the metal cations. However, HfO2
deviates from this trend, with a slightly smaller lat-
tice parameter, likely due to stronger ionic bonding,
which leads to a more compact crystal structure. This
deviation underscores the complexity of the relation-
ship between atomic size, bonding strength, and crys-
tal packing in determining the structural properties of
these oxides.
Regarding mechanical properties, ZrO2 is the

stiffest, demonstrating high resistance to shear and
tension. HfO2 follows, offering good shear resistance
but lower overall stiffness. TiO2 is moderately stiff,
while CeO2, the least stiff in compression and shear,
shows strong tensile properties. These differences are
directly related to variations in the crystal structures
and atomic bonds of each oxide.
The electronic behavior of these oxides is reflected
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in their band structures. TiO2, with a narrow band
gap of 1.15 eV, exhibits semiconductor properties,
making it ideal for photocatalysis. ZrO2 and HfO2,
with wider band gaps (3.16 and 3.77 eV), are better
suited as insulators, while CeO2, with a band gap of
2.17 eV, shows redox activity, making it valuable for
catalytic processes. PDOS analysis indicates that O
2p orbitals dominate the valence bands, while metal d-
and f-orbitals play a significant role in the conduction
bands, influencing the oxides’ performance in applica-
tions such as energy storage, catalysis, and electronics.
This work highlights that, despite these oxides

sharing similar crystal structures and phases, signif-
icant differences in their characteristics emerge due
to variations in the bonding and electronic configura-
tions. This reinforces the importance of distinguish-
ing between materials, even when they belong to the
same group in the periodic table. The insights from
this study deepen our understanding of these mate-
rials and provide a basis for selecting the most suitable
oxide for specific applications. TiO2, with its narrow
band gap, excels in photocatalysis; ZrO2 and HfO2,
with their insulating properties, are ideal for dielec-
tric applications; and CeO2, with its redox activity,
is promising for catalytic and energy storage appli-
cations. Future studies could further explore tuning
these materials’ properties through doping or phase
transitions, expanding their utility in emerging tech-
nologies.
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[81] I. Najdhefer, A. Kapidžić, Ab-initio calculations of cu-
bic and tetragonal ZrO2 doped with Cd, Y, Y+Nb,
Y+Ta-charge-compensating dopants: Structural and
electrostatic calculations, Radiation Physics and
Chemistry 222 (2024) 111804.
https://doi.org/10.1016/j.radphyschem.2024.111804

[82] I. D. Muhammad, M. Awang, O. Mamat, Z. Bt Shaari,
First-principles calculations of the structural, mecha-
nical and thermodynamics properties of cubic zirco-
nia, World Journal of Nano Science and Engineering
4 (2014) 97–103.
http://dx.doi.org/10.4236/wjnse.2014.42013

[83] C. A. Ponce, R. A. Casali, M. A. Caravaca, Ab initio
study of mechanical and thermo-acoustic properties of
tough ceramics: applications to HfO2 in its cubic and
orthorhombic phase, Journal of Physics: Condensed
Matter 20 (2008) 045213.
https://doi.org/10.1088/0953-8984/20/04/045213

[84] S. L. Dole, O. Hunter, C. J. Wooge, Elastic proper-
ties of monoclinic hafnium oxide at room temperature,
Journal of the American Ceramic Society 60 (1977)
488–490. https://doi.org/10.1111/J.1151-2916.1977.
TB14088.X

[85] S. Shi, X. Ke, C. Ouyang, H. Zhang, H. Ding, Y. Tang,
W. Zhou, P. Li, M. Lei, W. Tang, First-principles in-
vestigation of the bonding, optical and lattice dynam-
ical properties of CeO2, J. Power Sources 194 (2009)
830–834.
https://doi.org/10.1016/J.JPOWSOUR.2009.06.031

[86] J. Buckeridge, D. Scanlon, A. Walsh, A. A. Sokol,
Dynamical response and instability in ceria under
lattice expansion, Phys. Rev. B 87 (2013) 214304.
https://doi.org/10.1103/physrevb.87.214304

[87] Y. Yang, X. Fan, C. Liu, R. X. Ran, First principles
study of structural and electronic properties of cubic
phase of ZrO2 and HfO2, Physica B: Condensed Mat-
ter 434 (2014) 7–14.
https://doi.org/10.1016/j.physb.2013.10.037

[88] N. Igawa, Y. Ishii, T. Nagasaki, Y. Morii, S. Fu-
nahashi, H. Ohno, Crystal structure of metastable
tetragonal zirconia by neutron powder diffraction
study, Journal of the American Ceramic Society 76
(1993) 2673–2676. https://doi.org/10.1111/J.1151-
2916.1993.TB03999.X

https://doi.org/10.1103/PhysRev.71.809
https://doi.org/10.1063/1.4730608
https://doi.org/10.1103/PhysRevB.70.212101
https://doi.org/10.1142/S0217979214500702
https://doi.org/10.1007/BF00541601
https://doi.org/10.1039/F29878301109
http://dx.doi.org/10.1088/0965-0393/16/5/055007
https://doi.org/10.1038/sdata.2015.9
https://doi.org/10.1142/S0217979213500823
https://doi.org/10.1016/j.radphyschem.2024.111804
http://dx.doi.org/10.4236/wjnse.2014.42013
https://doi.org/10.1088/0953-8984/20/04/045213
https://doi.org/10.1111/J.1151-2916.1977.TB14088.X
https://doi.org/10.1111/J.1151-2916.1977.TB14088.X
https://doi.org/10.1016/J.JPOWSOUR.2009.06.031
https://doi.org/10.1103/physrevb.87.214304
https://doi.org/10.1016/j.physb.2013.10.037
https://doi.org/10.1111/J.1151-2916.1993.TB03999.X
https://doi.org/10.1111/J.1151-2916.1993.TB03999.X

