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Abstract

In order to discover the most accurate prediction of yield stress, UTS and elongation
percentage, the effects of various training algorithms on learning performance of the neural
networks were investigated. Different primary and secondary dendrite arm spacings were used
as inputs, and yield stress, UTS and elongation percentage were used as outputs in the training
and test modules of the neural network. After the preparation of the training set, the neural
network was trained using different training algorithms, hidden layers and neuron numbers in
hidden layers. The test set was used to check the system accuracy of each training algorithm
at the end of learning. The results show that Levenberg-Marquardt learning algorithm gave
the best prediction for yield stress, UTS and elongation percentage of A356 alloy.
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1. Introduction

Large quantities of castings are made annually
from aluminum alloy A356 (also known as Al-7Si-
-0.3Mg). This alloy is one of the most popular alloys
used for industry due to its high fluidity and good
castability [1-4].

Because of the solidifying characteristic of the alloy
and the difference in thermo conduction of the mold,
there are different temperatures at different parts in
the mold resulting in obvious temperature difference
in liquid alloy. Therefore, the liquid alloy in the same
mold has different cooling rate, and the final obtained
structure morphology is different [5-9].

Mechanical properties of cast A356 aluminum al-
loy are strongly dependent on defect distribution and
microstructure of the alloy. In order to predict the
mechanical performance of cast aluminum alloys, un-
derstanding the microstructure of the casting compon-
ents is a prerequisite. In the past years, numerous ef-
forts have been dedicated to understand the micro-
structure and tensile and fatigue properties of cast
A356 aluminum alloys [10-15].

Artificial Neural Network (ANN) is a logical struc-

ture with multi-processing elements, which are con-
nected through interconnection weights. The know-
ledge is presented by the interconnection weights,
which are adjusted during the learning phase. This
technique is especially valuable in processes where a
complete understanding of the physical mechanisms
is very difficult, or even impossible to acquire, as in
the case of material properties where no satisfactory
analytical model exists [16-21].

The aim of this study is to investigate the predic-
tion performance of various training algorithms using
a neural network computer program for yield stress,
UTS and elongation percentage of Al-Si-Mg alloy. The
results have shown that Levenberg-Marquardt learn-
ing algorithms gave the best results for this study.

2. Materials and experimental procedure

In this section, experimental processes have been
explained with all the details which require produ-
cing some experimental data to use in the training
and test set of the neural network. Approximately 5
kg of A356 was charged into the graphite crucible,
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Table 1. The physical parameters used for A356 alloy

A356(1) A356(s) COg2-sand mold
Heat diffusion coefficient (Wm™" K1) 90 90 52
Density (kgm™?) 2394 2680 1580
Heat capacity (W g7 K1) 1080 963 1045
Latent heat (J kg™") 397440 397440

Table 2. Boundary conditions for temperature

Melt CO3-sand mold

Liquidus temperature

Solidus temperature

T (°C) 720 25

608 578

heated up to above 720°C, and then the step cast-
ing was poured into the COs-sand mold. Aluminum
356 alloy {(wt.%): 7.5 Si, 0.38 Mg, 0.02 Zn, 0.001
Cu, 0.106 Fe, and Al (balance)} was selected as the
ingot. Five thermocouples were implemented to de-
termine the experimental cooling rate (for validation
simulated cooling rates). These thermocouples were
located in 10 mm from the side of each step. The cast-
ing was gated from the side of the riser. It was then
sectioned and samples were extracted from steps 1 to
5. Transverse specimens were cut from the castings
and prepared for tensile testing according to ASTM
Standard B577M.

3. Prediction of cooling rate and temperature
gradient with EEM

The numerical model is applied to simulate the so-
lidification of binary alloys. The mathematical formu-
lation of this solidification problem is given below [22]:

T (x,y,2,t)

T

= KV?T(2,y,2,t) + 4, (1)

where p is the density (kgm™3), K is the thermal
conductivity (Wm~'K~1), C is the specific heat
(Jkg7' K1), ¢ is the rate of energy generation
(Wm~3), Tis the temperature (K), tis the time (s).

The release of latent heat between the liquidus and
solidus temperatures is expressed by ¢:

) O fs
q= pLé—‘i, (2)

where L is the latent heat (Jkg™!), and f£ is the local
solid fraction.

The fraction of solid in the mushy zone is estimated
by the Scheil equation, which assumes perfect mixing
in the liquid and no solid diffusion. With the liquidus

and solidus having constant slopes, f; is then expressed

as:
f _q ( Tf—T )1/(’%—1) (3)
° Tf - Crliq ’

where Tt is the melting temperature (K), Thiq is the
liquidus temperature (K), and kg is the partition coef-
ficient. Then [23-25]:

5t (ko — 1)(Tt — Thiq)

(2—kg)
54, 1 T\
T — Tiig St

To calculate the temperature history of the cast-
ing and mold, some thermal and physical properties
are needed. The data necessary for the calculation are
given in Tables 1 and 2.

The latent heat released during solidification of the
remaining liquid of eutectic composition was taken
into account by a device, which considered a temper-
ature accumulation factor.

) = KV?T(z,y,2,t) +4, (5)

where C’ can be considered as a pseudo-specific heat
given by:

, 3 fs
CVM = (1 - fs)CL + fsCS> (7)

where the subscripts L, S and M refer to liquid, solid
and mushy, respectively. The other properties such as
thermal conductivity and density in the mushy zone
are described similarly as the specific heat [19]:

KM :(1_fs)KL+sz87 (8)
pm = (1= fs)pL + fsps. 9)
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Fig. 1. Schematic of two arms conditions.
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The finite element method (FEM) was used for dis-
cretization. Based on the above transient temperat-
ure model, the FEM method is used to calculate the
transient temperature, cooling rate and temperature
gradient (G).

4. Primary and secondary dendrite arm
spacing

Hunt, Kurz and Trivedi [23, 24] have derived
primary spacing formulas, which are applied for
steady-state conditions. The proposed theoretical
models for determination of dendrite spacing are
shown in Eq. (10):

FATD 0.25
dy = 4.3 (m> , (10)

and for A356 alloy [23]:

dy = 70.33G735V042 for V(G /10000) %67 < 1073,
dy =0.0576 V9 for V(G/10000)7°57 > 1073, (11)

where d; is the primary dendrite arm spacing, I' is
the Gibbs-Thomson coefficient, AT is the difference
between the liquidus and solidus equilibrium temper-
ature, Vis the dendrite tip growth rate in front of the
liquids isotherm.

The situation illustrated in Fig. 1 will be analyzed
in a very approximate manner, in order to predict the
secondary dendrite arm spacing following Kurz and
Fisher [24]. Two arms of radius R and r are placed in
locally isothermal melt. Since at the interface between
the solid and liquid, local equilibrium will be estab-
lished very rapidly, the concentration along the surface
of cylindrical arms will differ and the thinner arms will
be in the liquid with lower solute concentration. That
is [22, 24]:

T = T; + mCOR — (12)

I
R’

r
T/ = Tf + mC’i — ;, (13)

m(CE— CE) =T (% - 1) , (14)

r

and thin arms tend to dissolve while the thicker arms
tend to thicken. If R is assumed to be much greater
than r, two fluxes existing between the arms are:

R _ o
J= D(CL y CL>7 (15)
dr

=C7j (1 —ky)— 1
J=Cil—k) T (16)
dr I'D 1 1
_— _— — = ]_
dt  mCi(1—ko)d (R r) ’ (17)

t

CL = Co(CP — CO)E, (18)

where t is the time elapsed since the start of solidific-
ation, and t¢ is the local solidification time. If:

Ct = C., (19)

t¢ is approximately equal to (71, — T¢)/V . Rearranging
this equation and integrating from ¢t = 0 to ¢ = ¢y and

from r = 1o to r = 0 gives [22]:
, , I'D1In (%)
2 [To _To 0
dR? |2 +1n (1 t

R)] " m(l —ko)(Co—Co) "

(20)
and when the arms have melted:
do = 2d, (21)
1/3
I'DIn <%>
dy = 5.5 0 ], (22)

m(l — ko)(C() — Ce)

where C, is eutectic composition, Cy is initial alloy
concentration and m is liquidus slop.

5. Neural network training algorithms

There are various training algorithms used in
neural network applications. It is hardly difficult to
predict which of these training algorithms will be the
fastest one for any problem. Generally, it depends on
some factors; the structure of the networks, in other
words, the number of hidden layers, weights and biases
in the network aimed error at the learning and applic-
ation area, for instance, pattern recognition or classi-
fication or function approximation problem. However,
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the data structure and uniformity of the training set
are also important things that affect the system accur-
acy and performance. Some of famous train algorithms
are as follows [16-21, 25-33]:

— Bayesian regularization: is a network training
function that updates the weight and bias values ac-
cording to Levenberg-Marquardt optimization. It min-
imizes a combination of squared errors and weights,
and then determines the correct combination so as to
produce a network that generalizes well. The process
is called Bayesian regularization.

— Batch training with weight and bias learning
rules: trains a network with weight and bias learn-
ing rules with batch updates. The weights and biases
are updated at the end of an entire pass through the
input data.

— BFGS quasi-Newton back propagation: is a net-
work training function that updates weight and bias
values according to the BFGS quasi-Newton method.

— BFGS quasi-Newton back propagation for use
with NN model reference adaptive controller: is a net-
work training function that updates weight and bias
values according to the BFGS quasi-Newton method.

— Batch unsupervised weight/bias training: trains
a network with weight and bias learning rules with
batch updates. Weights and biases updates occur at
the end of an entire pass through the input data.

— Cyclical order incremental update: trains a net-
work with weight and bias learning rules with incre-
mental updates after each presentation of an input.
Inputs are presented in cyclic order.

— Powell-Beale conjugate gradient back propaga-
tion: is a network training function that updates
weight and bias values according to the conjugate
gradient back propagation with Powell-Beale restarts.

— Fletcher-Powell conjugate gradient back propaga-
tion: is a network training function that updates
weight and bias values according to conjugate gradient
back propagation with Fletcher-Reeves updates.

— Polak-Ribiére conjugate gradient back propaga-
tion: is a network training function that updates
weight and bias values according to conjugate gradient
back propagation with Polak-Ribiére updates.

— Gradient descent back propagation: is a network
training function that updates weight and bias values
according to gradient descent.

— Gradient descent with adaptive learning rule
back propagation: is a network training function that
updates weight and bias values according to gradient
descent with adaptive learning rate.

— Gradient descent with momentum back propaga-
tion: is a network training function that updates
weight and bias values according to gradient descent
with momentum.

— Gradient descent with momentum and adaptive
learning rule back propagation: is a network training
function that updates weight and bias values accord-
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: ° ® i
R ° : . Elongation
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Input . .
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e Outpu
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Fig. 2. Schematic representation of the neural network ar-
chitecture.

ing to gradient descent momentum and an adaptive
learning rate.

— Levenberg-Marquardt back propagation: is a net-
work training function that updates weight and bias
values according to Levenberg-Marquardt optimiza-
tion.

— One step secant back propagation: is a network
training function that updates weight and bias values
according to the one-step secant method.

— Random order incremental training with learning
functions: trains a network with weight and bias learn-
ing rules with incremental updates after each present-
ation of an input. Inputs are presented in random or-
der.

— Resilient back propagation (Rprop): is a network
training function that updates weight and bias values
according to the resilient back propagation algorithm.

— Sequential order incremental training with learn-
ing functions: trains a network with weight and bias
learning rules with sequential updates. The sequence
of inputs is presented to the network with updates
occurring after each time step.

— Scaled conjugate gradient back propagation: is
a network training function that updates weight and
bias values according to the scaled conjugate gradient
method.

In the performance analysis of various training al-
gorithms, the same prepared learning and test set
were used in the training processes of each learning
algorithm. The performance analysis was done from
the viewpoint of training duration, error minimization
and prediction achievement.

The neural network predictions were directly com-
pared with the experimental data. Mean square error
(MSE), which is statistical and scientific error compu-
tation method, was used to analyze the error.



M. O. Shabani et al. / Kovove Mater. 50 2012 25-31 29

14 W Levenberg—Marquardt
M BFGS quasi-Newton
12 B Gradient descent
10 B Resilient
W g & Random
7
=
6
4
2
0
3 4 5 6 7 g 9 10
Number of neurons in hidden layers
14 W Levenberg—Marquardt
W BFGS quasi-Newton
12 ® Gradient descent
M Resilient
10 “ Random
=8
=
-]
4
2
0

Number of neurons in hidden layers

14 B Levenberg-Marguardt
M BFGS quasi-Newton
12 B Gradient descent
B Resilient
& Random
=
o
=
3 4 5 6 7 8 9 10
Number of neurons in hidden layers
14 Mlevenberg —Marquardt
$BFGS quasi-Newton
12 M Gradient descent
#Resilient
10 %Random
= 8
g
6
4
2
0

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Number of neurons in hidden layers

Fig. 3. Evaluation of the training performance of the networks for different training algorithms according to MSE values
with one hidden layer (a), two hidden layers (b), three hidden layers (¢) and four hidden layers (d).

6. Results

Artificial neural network technique is a powerful
statistical methodology used to recognize the correla-
tions between the parameters of a given problem and
its responses. The input and output data set of the
model is illustrated schematically in Fig. 2.

In Fig. 3, MSE values for training data are
given for each training algorithm. The error val-
ues for different neuron numbers in the hidden layer
were analyzed and given graphically. This figure also
gives information about the accuracy of five fam-
ous training algorithms depending on the number
of neurons in the hidden layers and number of hid-
den layers. It is evident from this figure that the
least error value was obtained by using Levenberg-
-Marquardt training algorithm with two hidden lay-
ers and eight neurons (MSE = 0.96). BFGS quasi-
-Newton back propagation with four hidden layers and
six neurons in the hidden layers follows Levenberg-
-Marquardt algorithm, and thirdly gradient descent
back propagation including two hidden layers and
eight neurons in the hidden layers has clearly much
more error than the previous two ones. The error was

obtained from the Resilient back propagation train-
ing algorithm and Random order incremental training
with learning functions. The Levenberg-Marquardt
training algorithm was found to be the fastest train-
ing algorithm, however, it requires more memory with
the same error convergence bound compared to other
training methods [25]. MSE is a good criterion to ob-
tain information about learning performance. The it-
erations continued until it was decided that the min-
imum MSE error was gained.

Figure 4 shows the efficacy of the optimization
scheme by comparing the ANN results with the ex-
perimental values. There is a convincing agreement
between experimental and predicted values for yield
stress, UTS and elongation percentage of A356 alloy
using Levenberg-Marquardt training algorithm.

7. Conclusions

In this study, the effects of various training al-
gorithms on the prediction of yield stress, UTS and
elongation percentage for A356 alloy were investig-
ated. According to the results, Levenberg-Marquardt
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Fig. 4. Comparison between the experimental and pre-
dicted values: yield stress (a), UTS (b) and elongation
percentage (c).

learning algorithm gave the best prediction for yield
stress, UTS and elongation percentage of A356 alloy.

It is believed that an ANN with eight neurons in two
hidden layers results in accurate prediction of mech-
anical properties in casting A356 alloy.

As a result, considerable savings in terms of cost
and time were gained by using neural network model.
The prediction of ANN model was found to be in
good agreement with experimental data. Furthermore,
very good performance can be achieved by using the
most suitable training algorithm of the neural net-
work. For this study, the Levenberg-Marquardt train-
ing algorithm gave better and faster results than other
ones. According to the prediction results and MSE val-
ues for training and test sets, the superiority of this
algorithm is evidently seen.
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