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THE EFFECT OF HETEROGENEOUS
DISTRIBUTION OF POROSITY ON THE FLEXURAL
MODULI OF SINTERED IRON BARS

MIRIAM KUPKOVA'*, MARTIN KUPKA?, EVA DUDROVA!,
HERBERT DANNINGER?®, BRIGITTE WEISS?, MARGITA KABATOVA!,
DANA MELISOVA*

Bar shaped specimens were prepared from iron powder. The specimens possessed a
quasilayered distribution of porosity with porous outer regions and more dense core. For
such specimens, the effective flexural moduli determined by means of flexural vibration
parallel to the quasilayers were systematically higher than those determined from vibra-
tions perpendicular to the quasilayers. When the more porous surface regions were more
or less removed by grinding, the difference between “parallel” and “perpendicular” moduli
decreased or even vanished. Such effect of surface regions of less stiffness was also con-
firmed theoretically by calculating the relevant moduli for model bars with quasilayered
distribution of porosity.
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VPLYV NEROVNOMERNEHO ROZDELENIA POROVITOSTI
NA MODULY V OHYBE TYCI ZO SPEKANEHO ZELEZA

Zo 7zelezného prasku sme pripravili vzorky v tvare ty¢i. Vzorky mali kvéazivrstevnaté
rozdelenie poérovitosti, s pérovitymi okrajovymi oblastami a hustej$im jadrom. Pre takéto
vzorky boli efektivne moduly v ohybe uréované pomocou ohybovych kmitov rovnobeznych
s kvazivrstvami systematicky vysSie ako moduly uréované pomocou kmitov kolmych na
kvézivrstvy. Ked sme poérovitejsie povrchové oblasti viac alebo menej odbrisili, rozdiel
medzi hodnotami ,rovnobezného“ a ,kolmého“ modulu klesol, alebo dokonca vymizol.
Takyto vplyv povrchovych oblasti s nizSou tuhostou sme potvrdili taktiez teoreticky, a
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to vypoltom relevantnych modulov pre modelové tyle s kvéazivrstevnatym rozdelenim
porovitosti.

1. Introduction

The continuing quest for more accomplished and more efficient technical fa-
cilities is permanently forcing the materials scientists and engineers to produce
more sophisticated structural parts, which are very often macroscopically hetero-
geneous. Parts made of composite materials, powder-metallurgy components with
specially modified surface, functionally graded materials, etc., can be mentioned as
examples.

For design purposes, it is necessary to evaluate the response of such structural
parts to various external loading, i.e., it is desirable to know stiffness coefficients,
torsional rigidity, flexural rigidity of structural parts under consideration, and so
on. Sometimes, it is also useful to know effective (apparent) moduli of elasticity
for parts considered, although for macroscopically heterogeneous parts the term
“effective modulus” is rather vague and less informative in comparison to homo-
geneous parts. It is caused by the fact that, for heterogeneous parts, the overall
properties are in general considerably affected not only by moduli of elasticity and
volume fractions of particular materials constituting the component, but also by
the internal geometry and structure of particular part (porosity distribution, actual
distribution of constituents, etc.) and the geometrical shape of the part as a whole.

In the paper presented here, it is demonstrated how the variation of porosity
distribution along the specimen cross section affects the value of effective flexural
modulus measured by means of the dynamic resonant method [1]. Experimental
results are compared qualitatively to effective flexural moduli calculated for simple
theoretical models of real specimens. The characteristic behaviour of experimental
moduli agrees with that of theoretical ones.

2. Experimental

Specimens with a quasilayered distribution of porosity were prepared from
an iron powder by pressing and sintering with subsequent hammer forging. As
a basis we used a water atomized iron powder WPL-200, produced by means of
Mannesmann equipment at ZVL-METALSINT, a.s., Dolny Kubin, Slovakia. The
particles of the powder are of approximately equiaxed type with the characteristic
surface morphology.

To obtain the specimens with low and inhomogeneously distributed porosity,
the following technological procedure was used: Samples were compacted at 600
MPa to 4 different heights (12, 10, 8, 7 mm). The compacts were then sintered for
2 hrs at 1120°C in a retort silit furnace, the atmosphere being cracked ammonia (75
% Ha + 25 % Nj). The dew point of the atmosphere was —20°C. After sintering,
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the samples were further densified by hammer forging at 1100°C in hydrogen at-
mosphere to final height of 6 mm. The densified semi-products were subsequently
shaped to the form suitable for testing. The final size of the resulting bars being
tested was 6 x 6 x 90 mm. The density of these rectangular bars was determined
by measuring the dimensions and by weighing. The porosity obtained was in the
range from 2.4 to 7.6 %.

Metallographic study revealed that the above described technological proce-
dure led to nonhomogeneous porosity distribution within the samples (Fig. 1). The
porosity was varying along the pressing (and forging) direction and its value de-
creased from the surface to the bulk of specimens. Such quasilayered bars were used
for measuring the flexural moduli. After the measurements of moduli on intact bars
had been completed, the porous surface layers were ground off and the testing bars
were shaped to the new final size 3 x 3 x 90 mm. We obtained a set of specimens
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Fig. 1. Polished cross section of a bar of total porosity 2.7 %, made of a sintered iron

and the areal fraction pa that the pores occupy from the particular bands of the cross

section presented. The areal fraction was determined by means of the image analysis. Ir
the figure, pressing (and forging) direction is the vertical one.
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with porosities that were lower than the porosities of original (not ground) samples.
The differences in porosities of a bar before and after grinding were usually about
2 %. The distribution of porosity in ground samples was more homogeneous than
in intact ones. These modified bars were again used for measuring the moduli.

The dynamic resonant method [1] was used for determining the effective flex-
ural modulus. The frequency of the specimen natural vibrations was measured
employing the apparatus Gringo Sonic MKS “Industrial” at University of Vienna.
The frequency of flexural fundamental mode for the bar with free ends was used
for evaluating the modulus. For a uniform, homogeneous and isotropic bar the
flexural modulus is the same as the Young’s modulus of the bar material. Since
our specimens were not isotropic and homogeneous, the modulus measured was an
effective modulus and differences in the values obtained parallel and perpendicu-
lar, respectively, to the pressing direction were expected. In fact it turned out that
the E values determined by means of flexural vibration with bending plane per-
pendicular to quasilayers were lower than those determined by means of vibration
with bending plane parallel to quasilayers (Fig. 2a). For specimens with (at least
partially) removed surface layers, the differences between these two moduli were
much smaller than for original bars, and for some specimens this difference even
vanished (Fig. 2b).
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Fig. 2. Effective flexural modulus F as a function of total porosity P. Values presented

were determined in an experimental way from the specimen flexural vibration with the

bending plane perpendicular (o) and parallel (o) to quasilayers for original samples (a)
and for samples with removed surface layers (b).
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3. Theory

To investigate the effect of quasilayered structure on effective flexural moduli
in a theoretical way, the standard “dynamic-resonant-method” evaluating formula,
2
M L4 f

8 = 0.94p49——- L4
Ef = 0.9464 T TSR (1)

was used for determining the flexural modulus values Ef. But in place of the
experimentally measured resonant frequency, f, the theoretically calculated natural
frequency of a quasilayered bar was used as an “input parameter”. Expr. (1) stands
for a rectangular bar undergoing free flexural vibration with free ends. M is the
mass of the bar, H,WW and L are height, width and length of the bar, respectively.
t represents the specimen cross-sectional dimension in the direction of vibration,
i.e., t = H if the bending plane is parallel to HL-plane, or t = W if the bending
plane is parallel to WL-plane.

Corresponding theoretical expressions are published in our papers [2, 3]. Here
we only briefly sketch the method of derivation and state the resultant relations.
A rectangular bar of height H, width W and length L was considered (Fig. 3).
Properties of material of the bar were assumed as varying only in the direction of
the bar height. Vibration frequencies are obtained by solving the corresponding
equation of motion. The equation of motion is derived by means of the Hamilton’s
principle of minimal action. Lagrange’s function, occurring in the expression for

Fig. 3. Schematic sketch of a bar considered as a theoretical model of real quasilayered
bars.
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action, consists of the kinetic and potential (elastic) energies of a deformed bar.
The required elastic energy is determined by means of the strain and stress tensor
fields derived for a bent quasilayered bar under consideration. The geometry of
deformation of material fibres and bar planar cross sections in a bent quasilayered
bar is similar to the geometry of deformation in a homogeneous bar. Therefore,
the strain tensor is qualitatively similar to the strain tensor in a homogeneous bar.
The stress tensor is determined on the basis of the Hooke’s law by means of the
above mentioned strain tensor and the nonhomogeneous distribution of the mate-
rial Young’s modulus values along the cross section. The resultant elastic energy
of a bent quasilayered bar, if expressed by means of the neutral-fibre curvature,
differs from the elastic energy of a homogeneous bar only by a pre-factor — the
flexural rigidity of the bar. The kinetic energy of a quasilayered bar, if expressed
by means of the velocity of the neutral-fibre transverse motion, differs from that
of a homogeneous bar by the pre-factor — mass of the bar per unit length. These
differences lead to the analogous changes of corresponding quantities in the equa-
tion of motion and consequently in the relation for frequency of a homogeneous
bar when they are rederived for the quasilayered bar.

Substituting theoretical frequencies into the formula (1) used for evaluating
the “experimental” moduli, the following relations for effective moduli are obtained:

H

- . ~1
E(z)r’dz — E(z)zdz E(z)dz ] (2)
[roe={[Foe) (]

0

12
fl. .

for vibration in the HL-plane, i.e. bending occurring perpendicular to quasilayers,
and

Efl = % / E(z)dz (3)

for vibration in the WL-plane, i.e. bending occurring parallel to quasilayers. E(z)
represents the materials’ Young’s modulus that can vary along the height of the
bar.

To calculate theoretical effective moduli (2) and (3), we need to find (or esti-
mate) the Young’s modulus F(z) that properly simulates the relevant properties
of real bars and that can be substituted to relations (2), (3).

According to relations among bar cross-sectional dimensions, pore sizes, and
the rate of change of porosity along the cross section, we suppose that the real
porous material in the vicinity of each point of the bar can be treated as the
equivalent poreless material with an effective Young’s modulus E(z). In addition,
we assume that within the porosity range under consideration the Young’s modulus
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of equivalent material decreases linearly with increasing porosity of real material.
So, for the Young’s modulus E(z) at a given point of the bar we have

B(z) = By + Jop(a), @)

where p(x) represents the local porosity. Ey and dE/dP are the Young’s modulus
value of poreless material and the rate of Young’s modulus decrease, respectively.
Taking into account the material used for preparation of the samples and experi-
mental data obtained, we were using the values 212 GPa for Ey and —5 GPa per
one percent, of porosity for dE/dP.

The proper choice of local porosity p(z) represents another step in determining
the theoretical effective moduli. The porosity of real quasilayered bars were often
distributed asymmetrically. Nevertheless, we chose a symmetric function p(z), as
(i) such distribution is sufficient for a qualitative demonstration of the characteristic
behaviour of effective flexural moduli, and (ii) calculations are easier. Of course, if
we would like to compare experimental and theoretical results also quantitatively,
more complex porosity distribution should be chosen.

So as a simple theoretical model of our quasilayered bars, we considered a bar
with local porosity p(x) that increases according to power law with distance from
the bar centre. There are several ways how to express this power-law dependence.
The following relation was used in our calculations

p(x) = pB + (n +1)(Pa — pB) (ZTI; H) , n is even integer. (5)

pB represents the porosity in the centre of the bar. Total porosity, Py, is determined
H
1 - e
as Py = T / p(r)dz. The removal of surface layers is simulated by restricting the

values avail:gble for z, keeping at the same time values pg, Py and H constant and
corresponding to the original bar. That is, for original bar 0 < z < H, for ground
bar H/4 < x < 3H/4. Of course, the total porosity of a “ground” sample will be
lower than Ppy. Fig. 4 presents the distributions of local porosity along the height
of a model bar for n = 2 and n = 4.

Some of theoretical results for effective flexural moduli are demonstrated in
Fig. 5. Quantities presented are effective flexural moduli calculated for a bar with
local porosity increasing as the second (a, b) and fourth (¢, d) powers of the distance
from the bar centre. Parameters determining porosity distribution (5) were chosen
in such a way that the local porosity in the bar centre, pg, was kept lower by 2
% than the total porosity of the original (intact) bar, i.e., pg = P-2 %. Moduli
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Fig. 4. Local porosity p as a function of position along the bar height, z/H. The curves

presented are for quadratic (dotted lines) and quartic (solid lines) dependences, for original

bars of full height (0 < z/H < 1) (a) and for “ground” bars of half height (0.25 < z/H <
0.75) (b). For all curves, parameters Py = 8 % and ps = 6 % were used.

were calculated for bars of original height (Fig. 5a,c) as well as for bars of half
height (Fig. 5b,d) (a theoretical model for bars with ground off the surface layers).
We can see that modulus values determined by means of vibration perpendicular
to quasilayers are lower than those determined by means of vibration parallel to
quasilayers.

With increasing exponent n, the difference between Elﬂ and E? increases for
original bars (Fig. 5a,c) and decreases for “ground” bars (Fig. 5b,d). It is due to
the fact that with increasing exponent n, the distribution (5) of local porosity p(z)
becomes much flatter in the central region of the bar and sharply increases in thin
surface regions (Fig. 4a). The higher the exponent n is, the thinner these regions
are. So, the distribution of porosity in the original bar becomes more heterogeneous,
with higher gradient of porosity concentrated within thinner regions near surfaces.
But if we take into account only a bar central region (after “grinding” the original
bar), the distribution p(z) becomes more homogeneous with increasing n (Fig. 4b).
Therefore, for the “ground” bars of half heights, difference between Eﬁ’ and Eﬁ
decreases with increasing n and for sufficiently high n this difference even vanished.

4. Discussion and conclusions

In this paper, the effect of quasilayered distribution of porosity in testing bars
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Fig. 5. Effective flexural modulus E as a function of total porosity P. Values presented

were determined in a theoretical way for quasilayered bars with quadratic (a,b) and quartic

(c,d) dependence of local porosity on the distance from the bar centre. Moduli were

calculated by means of frequencies of flexural vibration with bending plane perpendicular

(o) and parallel (o) to quasilayers. The bars of original height (a,c) as well as bars of half
height (b,d) were considered.

on the measured flexural moduli is demonstrated both in experimental and the-
oretical ways. Rectangular bar-shaped samples were prepared from iron powder.
The specimens possessed a quasilayered structure consisting of surface regions with
higher porosity and relatively less porous core (Fig. 1). Flexural moduli measured
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by means of flexural vibration parallel to quasilayers were higher than those mea-
sured by means of vibrations perpendicular to quasilayers (Fig. 2a). When the
porous regions at the surface were more or less removed, the difference between
these two moduli became much smaller, and sometimes even vanished (Fig. 2b).
This effect of surface regions with less stiffness on the effective flexural moduli was
demonstrated also theoretically by calculating the relevant moduli for model bars
simulating the real specimens. Theoretical results confirmed that for quasilayered
bars with core stiffer than surface regions the “parallel” flexural modulus is usually
higher than the “perpendicular” one. But as the difference between properties of
core and surface decreases (surface layers are successively removed), the difference
between these two moduli decreases, too (Fig. 5).

Such behaviour of flexural moduli is caused by the fact that for rectangular
bar-shaped samples the flexural rigidity (which actually determines the specimen
bending properties [4]) is mostly affected by stiffness of regions located near the
surfaces perpendicular to bending plane. So if our quasilayered bars are bent in the
plane perpendicular to quasilayers, the relevant regions are surface porous layers
with lowered stiffness due to higher porosity. On the other hand, for bending
in the plane parallel to quasilayers, relevant surface regions contain not only a
part of porous layers but also a part of stiffer, less porous core layer. So one can
expect that for our bars the effective flexural modulus, which is, by definition, the
Young’s modulus of a hypothetical homogeneous bar of the same size, shape and
flexural rigidity as the actual quasilayered one, will be lower for bending in the plane
perpendicular to quasilayers than for bending in the plane parallel to quasilayers. In
the opposite case, if the quasilayered bars would consist of stiffer surface layers and
a core region of less stiffness, the bending in the plane perpendicular to quasilayers
would give higher value of the effective flexural modulus than bending in the plane
parallel to quasilayers. Anyway, as the samples become more homogeneous, that
is, difference between properties of surface and core decreases, difference between
the two moduli decreases, too.

To compare the theory and experiment quantitatively, we need detailed infor-
mation on the distribution, sizes and shapes of pores within real samples. Such
complex data should be only determined by combination of several experimental
methods [5]. It represents the aim of our further investigation.
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